initial revision
[swftools.git] / pdf2swf / ttf2pt1 / pt1.c
diff --git a/pdf2swf/ttf2pt1/pt1.c b/pdf2swf/ttf2pt1/pt1.c
new file mode 100644 (file)
index 0000000..0099324
--- /dev/null
@@ -0,0 +1,5966 @@
+/*
+ * see COPYRIGHT
+ */
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <sys/types.h>
+#include <sys/stat.h>
+#include <fcntl.h>
+#include <time.h>
+#include <ctype.h>
+#include <math.h>
+
+#ifndef WINDOWS
+#      include <netinet/in.h>
+#      include <unistd.h>
+#else
+#      include "windows.h"
+#endif
+
+#include "ttf.h"
+#include "pt1.h"
+#include "global.h"
+
+/* big and small values for comparisons */
+#define FBIGVAL        (1e20)
+#define FEPS   (100000./FBIGVAL)
+
+int      stdhw, stdvw; /* dominant stems widths */
+int      stemsnaph[12], stemsnapv[12]; /* most typical stem width */
+
+int      bluevalues[14];
+int      nblues;
+int      otherblues[10];
+int      notherb;
+int      bbox[4];      /* the FontBBox array */
+double   italic_angle;
+
+GLYPH   *glyph_list;
+int    encoding[ENCTABSZ];     /* inverse of glyph[].char_no */
+int    kerning_pairs = 0;
+
+/* prototypes */
+static int isign( int x);
+static int fsign( double x);
+static void fixcvdir( GENTRY * ge, int dir);
+static void fixcvends( GENTRY * ge);
+static int fgetcvdir( GENTRY * ge);
+static int igetcvdir( GENTRY * ge);
+static int fiszigzag( GENTRY *ge);
+static int iiszigzag( GENTRY *ge);
+static GENTRY * freethisge( GENTRY *ge);
+static void addgeafter( GENTRY *oge, GENTRY *nge );
+static GENTRY * newgentry( int flags);
+static void debugstems( char *name, STEM * hstems, int nhs, STEM * vstems, int nvs);
+static int addbluestems( STEM *s, int n);
+static void sortstems( STEM * s, int n);
+static int stemoverlap( STEM * s1, STEM * s2);
+static int steminblue( STEM *s);
+static void markbluestems( STEM *s, int nold);
+static int joinmainstems( STEM * s, int nold, int useblues);
+static void joinsubstems( STEM * s, short *pairs, int nold, int useblues);
+static void fixendpath( GENTRY *ge);
+static void fdelsmall( GLYPH *g, double minlen);
+static double fcvarea( GENTRY *ge);
+static int fckjoinedcv( GLYPH *g, double t, GENTRY *nge, 
+       GENTRY *old1, GENTRY *old2, double k);
+static double fcvval( GENTRY *ge, int axis, double t);
+static double fclosegap( GENTRY *from, GENTRY *to, int axis,
+       double gap, double *ret);
+
+static int
+isign(
+     int x
+)
+{
+       if (x > 0)
+               return 1;
+       else if (x < 0)
+               return -1;
+       else
+               return 0;
+}
+
+static int
+fsign(
+     double x
+)
+{
+       if (x > 0.0)
+               return 1;
+       else if (x < 0.0)
+               return -1;
+       else
+               return 0;
+}
+
+static GENTRY *
+newgentry(
+       int flags
+)
+{
+       GENTRY         *ge;
+
+       ge = calloc(1, sizeof(GENTRY));
+
+       if (ge == 0) {
+               fprintf(stderr, "***** Memory allocation error *****\n");
+               exit(255);
+       }
+       ge->stemid = -1;
+       ge->flags = flags;
+       /* the rest is set to 0 by calloc() */
+       return ge;
+}
+
+/*
+ * Routines to print out Postscript functions with optimization
+ */
+
+void
+rmoveto(
+       int dx,
+       int dy
+)
+{
+       if (optimize && dx == 0)
+               fprintf(pfa_file, "%d vmoveto\n", dy);
+       else if (optimize && dy == 0)
+               fprintf(pfa_file, "%d hmoveto\n", dx);
+       else
+               fprintf(pfa_file, "%d %d rmoveto\n", dx, dy);
+}
+
+void
+rlineto(
+       int dx,
+       int dy
+)
+{
+       if (optimize && dx == 0 && dy == 0)     /* for special pathologic
+                                                * case */
+               return;
+       else if (optimize && dx == 0)
+               fprintf(pfa_file, "%d vlineto\n", dy);
+       else if (optimize && dy == 0)
+               fprintf(pfa_file, "%d hlineto\n", dx);
+       else
+               fprintf(pfa_file, "%d %d rlineto\n", dx, dy);
+}
+
+void
+rrcurveto(
+         int dx1,
+         int dy1,
+         int dx2,
+         int dy2,
+         int dx3,
+         int dy3
+)
+{
+       /* first two ifs are for crazy cases that occur surprisingly often */
+       if (optimize && dx1 == 0 && dx2 == 0 && dx3 == 0)
+               rlineto(0, dy1 + dy2 + dy3);
+       else if (optimize && dy1 == 0 && dy2 == 0 && dy3 == 0)
+               rlineto(dx1 + dx2 + dx3, 0);
+       else if (optimize && dy1 == 0 && dx3 == 0)
+               fprintf(pfa_file, "%d %d %d %d hvcurveto\n",
+                       dx1, dx2, dy2, dy3);
+       else if (optimize && dx1 == 0 && dy3 == 0)
+               fprintf(pfa_file, "%d %d %d %d vhcurveto\n",
+                       dy1, dx2, dy2, dx3);
+       else
+               fprintf(pfa_file, "%d %d %d %d %d %d rrcurveto\n",
+                       dx1, dy1, dx2, dy2, dx3, dy3);
+}
+
+void
+closepath(void)
+{
+       fprintf(pfa_file, "closepath\n");
+}
+
+/*
+ * Many of the path processing routines exist (or will exist) in
+ * both floating-point and integer version. Fimally most of the
+ * processing will go in floating point and the integer processing
+ * will become legacy.
+ * The names of floating routines start with f, names of integer 
+ * routines start with i, and those old routines existing in one 
+ * version only have no such prefix at all.
+ */
+
+/*
+** Routine that checks integrity of the path, for debugging
+*/
+
+void
+assertpath(
+          GENTRY * from,
+          char *file,
+          int line,
+          char *name
+)
+{
+       GENTRY         *first, *pe, *ge;
+       int     isfloat;
+
+       if(from==0)
+               return;
+       isfloat = (from->flags & GEF_FLOAT);
+       pe = from->prev;
+       for (ge = from; ge != 0; pe = ge, ge = ge->next) {
+               if( (ge->flags & GEF_FLOAT) ^ isfloat ) {
+                       fprintf(stderr, "**! assertpath: called from %s line %d (%s) ****\n", file, line, name);
+                       fprintf(stderr, "float flag changes from %s to %s at 0x%p (type %c, prev type %c)\n",
+                               (isfloat ? "TRUE" : "FALSE"), (isfloat ? "FALSE" : "TRUE"), ge, ge->type, pe->type);
+                       abort();
+               }
+               if (pe != ge->prev) {
+                       fprintf(stderr, "**! assertpath: called from %s line %d (%s) ****\n", file, line, name);
+                       fprintf(stderr, "unidirectional chain 0x%x -next-> 0x%x -prev-> 0x%x \n",
+                               pe, ge, ge->prev);
+                       abort();
+               }
+
+               switch(ge->type) {
+               case GE_MOVE:
+                       break;
+               case GE_PATH:
+                       if (ge->prev == 0) {
+                               fprintf(stderr, "**! assertpath: called from %s line %d (%s) ****\n", file, line, name);
+                               fprintf(stderr, "empty path at 0x%x \n", ge);
+                               abort();
+                       }
+                       break;
+               case GE_LINE:
+               case GE_CURVE:
+                       if(ge->frwd->bkwd != ge) {
+                               fprintf(stderr, "**! assertpath: called from %s line %d (%s) ****\n", file, line, name);
+                               fprintf(stderr, "unidirectional chain 0x%x -frwd-> 0x%x -bkwd-> 0x%x \n",
+                                       ge, ge->frwd, ge->frwd->bkwd);
+                               abort();
+                       }
+                       if(ge->prev->type == GE_MOVE) {
+                               first = ge;
+                               if(ge->bkwd->next->type != GE_PATH) {
+                                       fprintf(stderr, "**! assertpath: called from %s line %d (%s) ****\n", file, line, name);
+                                       fprintf(stderr, "broken first backlink 0x%x -bkwd-> 0x%x -next-> 0x%x \n",
+                                               ge, ge->bkwd, ge->bkwd->next);
+                                       abort();
+                               }
+                       }
+                       if(ge->next->type == GE_PATH) {
+                               if(ge->frwd != first) {
+                                       fprintf(stderr, "**! assertpath: called from %s line %d (%s) ****\n", file, line, name);
+                                       fprintf(stderr, "broken loop 0x%x -...-> 0x%x -frwd-> 0x%x \n",
+                                               first, ge, ge->frwd);
+                                       abort();
+                               }
+                       }
+                       break;
+               }
+
+       }
+}
+
+void
+assertisfloat(
+       GLYPH *g,
+       char *msg
+)
+{
+       if( !(g->flags & GF_FLOAT) ) {
+               fprintf(stderr, "**! Glyph %s is not float: %s\n", g->name, msg);
+               abort();
+       }
+       if(g->lastentry) {
+               if( !(g->lastentry->flags & GEF_FLOAT) ) {
+                       fprintf(stderr, "**! Glyphs %s last entry is int: %s\n", g->name, msg);
+                       abort();
+               }
+       }
+}
+
+void
+assertisint(
+       GLYPH *g,
+       char *msg
+)
+{
+       if( (g->flags & GF_FLOAT) ) {
+               fprintf(stderr, "**! Glyph %s is not int: %s\n", g->name, msg);
+               abort();
+       }
+       if(g->lastentry) {
+               if( (g->lastentry->flags & GEF_FLOAT) ) {
+                       fprintf(stderr, "**! Glyphs %s last entry is float: %s\n", g->name, msg);
+                       abort();
+               }
+       }
+}
+
+
+/*
+ * Routines to save the generated data about glyph
+ */
+
+void
+fg_rmoveto(
+         GLYPH * g,
+         double x,
+         double y)
+{
+       GENTRY         *oge;
+
+       if (ISDBG(BUILDG))
+               fprintf(stderr, "%s: f rmoveto(%g, %g)\n", g->name, x, y);
+
+       assertisfloat(g, "adding float MOVE");
+
+       if ((oge = g->lastentry) != 0) {
+               if (oge->type == GE_MOVE) {     /* just eat up the first move */
+                       oge->fx3 = x;
+                       oge->fy3 = y;
+               } else if (oge->type == GE_LINE || oge->type == GE_CURVE) {
+                       fprintf(stderr, "Glyph %s: MOVE in middle of path\n", g->name);
+               } else {
+                       GENTRY         *nge;
+
+                       nge = newgentry(GEF_FLOAT);
+                       nge->type = GE_MOVE;
+                       nge->fx3 = x;
+                       nge->fy3 = y;
+
+                       oge->next = nge;
+                       nge->prev = oge;
+                       g->lastentry = nge;
+               }
+       } else {
+               GENTRY         *nge;
+
+               nge = newgentry(GEF_FLOAT);
+               nge->type = GE_MOVE;
+               nge->fx3 = x;
+               nge->fy3 = y;
+               nge->bkwd = (GENTRY*)&g->entries;
+               g->entries = g->lastentry = nge;
+       }
+
+       if (0 && ISDBG(BUILDG))
+               dumppaths(g, NULL, NULL);
+}
+
+void
+fg_rlineto(
+         GLYPH * g,
+         double x,
+         double y)
+{
+       GENTRY         *oge, *nge;
+
+       if (ISDBG(BUILDG))
+               fprintf(stderr, "%s: f rlineto(%g, %g)\n", g->name, x, y);
+
+       assertisfloat(g, "adding float LINE");
+
+       nge = newgentry(GEF_FLOAT);
+       nge->type = GE_LINE;
+       nge->fx3 = x;
+       nge->fy3 = y;
+
+       if ((oge = g->lastentry) != 0) {
+               if (x == oge->fx3 && y == oge->fy3) {   /* empty line */
+                       /* ignore it or we will get in troubles later */
+                       free(nge);
+                       return;
+               }
+               if (g->path == 0) {
+                       g->path = nge;
+                       nge->bkwd = nge->frwd = nge;
+               } else {
+                       oge->frwd = nge;
+                       nge->bkwd = oge;
+                       g->path->bkwd = nge;
+                       nge->frwd = g->path;
+               }
+
+               oge->next = nge;
+               nge->prev = oge;
+               g->lastentry = nge;
+       } else {
+               WARNING_1 fprintf(stderr, "Glyph %s: LINE outside of path\n", g->name);
+               free(nge);
+       }
+
+       if (0 && ISDBG(BUILDG))
+               dumppaths(g, NULL, NULL);
+}
+
+void
+fg_rrcurveto(
+           GLYPH * g,
+           double x1,
+           double y1,
+           double x2,
+           double y2,
+           double x3,
+           double y3)
+{
+       GENTRY         *oge, *nge;
+
+       oge = g->lastentry;
+
+       if (ISDBG(BUILDG))
+               fprintf(stderr, "%s: f rrcurveto(%g, %g, %g, %g, %g, %g)\n"
+                       ,g->name, x1, y1, x2, y2, x3, y3);
+
+       assertisfloat(g, "adding float CURVE");
+
+       if (oge && oge->fx3 == x1 && x1 == x2 && x2 == x3)      /* check if it's
+                                                                * actually a line */
+               fg_rlineto(g, x1, y3);
+       else if (oge && oge->fy3 == y1 && y1 == y2 && y2 == y3)
+               fg_rlineto(g, x3, y1);
+       else {
+               nge = newgentry(GEF_FLOAT);
+               nge->type = GE_CURVE;
+               nge->fx1 = x1;
+               nge->fy1 = y1;
+               nge->fx2 = x2;
+               nge->fy2 = y2;
+               nge->fx3 = x3;
+               nge->fy3 = y3;
+
+               if (oge != 0) {
+                       if (x3 == oge->fx3 && y3 == oge->fy3) {
+                               free(nge);      /* consider this curve empty */
+                               /* ignore it or we will get in troubles later */
+                               return;
+                       }
+                       if (g->path == 0) {
+                               g->path = nge;
+                               nge->bkwd = nge->frwd = nge;
+                       } else {
+                               oge->frwd = nge;
+                               nge->bkwd = oge;
+                               g->path->bkwd = nge;
+                               nge->frwd = g->path;
+                       }
+
+                       oge->next = nge;
+                       nge->prev = oge;
+                       g->lastentry = nge;
+               } else {
+                       WARNING_1 fprintf(stderr, "Glyph %s: CURVE outside of path\n", g->name);
+                       free(nge);
+               }
+       }
+
+       if (0 && ISDBG(BUILDG))
+               dumppaths(g, NULL, NULL);
+}
+
+void
+g_closepath(
+           GLYPH * g
+)
+{
+       GENTRY         *oge, *nge;
+
+       if (ISDBG(BUILDG))
+               fprintf(stderr, "%s: closepath\n", g->name);
+
+       oge = g->lastentry;
+
+       if (g->path == 0) {
+               WARNING_1 fprintf(stderr, "Warning: **** closepath on empty path in glyph \"%s\" ****\n",
+                       g->name);
+               if (oge == 0) {
+                       WARNING_1 fprintf(stderr, "No previois entry\n");
+               } else {
+                       WARNING_1 fprintf(stderr, "Previous entry type: %c\n", oge->type);
+                       if (oge->type == GE_MOVE) {
+                               g->lastentry = oge->prev;
+                               if (oge->prev == 0)
+                                       g->entries = 0;
+                       }
+               }
+               return;
+       }
+
+       nge = newgentry(oge->flags & GEF_FLOAT); /* keep the same type */
+       nge->type = GE_PATH;
+
+       g->path = 0;
+
+       oge->next = nge;
+       nge->prev = oge;
+       g->lastentry = nge;
+
+       if (0 && ISDBG(BUILDG))
+               dumppaths(g, NULL, NULL);
+}
+
+/*
+ * * SB * Routines to smooth and fix the glyphs
+ */
+
+/*
+** we don't want to see the curves with coinciding middle and
+** outer points
+*/
+
+static void
+fixcvends(
+         GENTRY * ge
+)
+{
+       int             dx, dy;
+       int             x0, y0, x1, y1, x2, y2, x3, y3;
+
+       if (ge->type != GE_CURVE)
+               return;
+
+       if(ge->flags & GEF_FLOAT) {
+               fprintf(stderr, "**! fixcvends(0x%x) on floating entry, ABORT\n", ge);
+               abort(); /* dump core */
+       }
+
+       x0 = ge->prev->ix3;
+       y0 = ge->prev->iy3;
+       x1 = ge->ix1;
+       y1 = ge->iy1;
+       x2 = ge->ix2;
+       y2 = ge->iy2;
+       x3 = ge->ix3;
+       y3 = ge->iy3;
+
+
+       /* look at the start of the curve */
+       if (x1 == x0 && y1 == y0) {
+               dx = x2 - x1;
+               dy = y2 - y1;
+
+               if (dx == 0 && dy == 0
+                   || x2 == x3 && y2 == y3) {
+                       /* Oops, we actually have a straight line */
+                       /*
+                        * if it's small, we hope that it will get optimized
+                        * later
+                        */
+                       if (abs(x3 - x0) <= 2 || abs(y3 - y0) <= 2) {
+                               ge->ix1 = x3;
+                               ge->iy1 = y3;
+                               ge->ix2 = x0;
+                               ge->iy2 = y0;
+                       } else {/* just make it a line */
+                               ge->type = GE_LINE;
+                       }
+               } else {
+                       if (abs(dx) < 4 && abs(dy) < 4) {       /* consider it very
+                                                                * small */
+                               ge->ix1 = x2;
+                               ge->iy1 = y2;
+                       } else if (abs(dx) < 8 && abs(dy) < 8) {        /* consider it small */
+                               ge->ix1 += dx / 2;
+                               ge->iy1 += dy / 2;
+                       } else {
+                               ge->ix1 += dx / 4;
+                               ge->iy1 += dy / 4;
+                       }
+                       /* make sure that it's still on the same side */
+                       if (abs(x3 - x0) * abs(dy) < abs(y3 - y0) * abs(dx)) {
+                               if (abs(x3 - x0) * abs(ge->iy1 - y0) > abs(y3 - y0) * abs(ge->ix1 - x0))
+                                       ge->ix1 += isign(dx);
+                       } else {
+                               if (abs(x3 - x0) * abs(ge->iy1 - y0) < abs(y3 - y0) * abs(ge->ix1 - x0))
+                                       ge->iy1 += isign(dy);
+                       }
+
+                       ge->ix2 += (x3 - x2) / 8;
+                       ge->iy2 += (y3 - y2) / 8;
+                       /* make sure that it's still on the same side */
+                       if (abs(x3 - x0) * abs(y3 - y2) < abs(y3 - y0) * abs(x3 - x2)) {
+                               if (abs(x3 - x0) * abs(y3 - ge->iy2) > abs(y3 - y0) * abs(x3 - ge->ix2))
+                                       ge->iy1 -= isign(y3 - y2);
+                       } else {
+                               if (abs(x3 - x0) * abs(y3 - ge->iy2) < abs(y3 - y0) * abs(x3 - ge->ix2))
+                                       ge->ix1 -= isign(x3 - x2);
+                       }
+
+               }
+       } else if (x2 == x3 && y2 == y3) {
+               dx = x1 - x2;
+               dy = y1 - y2;
+
+               if (dx == 0 && dy == 0) {
+                       /* Oops, we actually have a straight line */
+                       /*
+                        * if it's small, we hope that it will get optimized
+                        * later
+                        */
+                       if (abs(x3 - x0) <= 2 || abs(y3 - y0) <= 2) {
+                               ge->ix1 = x3;
+                               ge->iy1 = y3;
+                               ge->ix2 = x0;
+                               ge->iy2 = y0;
+                       } else {/* just make it a line */
+                               ge->type = GE_LINE;
+                       }
+               } else {
+                       if (abs(dx) < 4 && abs(dy) < 4) {       /* consider it very
+                                                                * small */
+                               ge->ix2 = x1;
+                               ge->iy2 = y1;
+                       } else if (abs(dx) < 8 && abs(dy) < 8) {        /* consider it small */
+                               ge->ix2 += dx / 2;
+                               ge->iy2 += dy / 2;
+                       } else {
+                               ge->ix2 += dx / 4;
+                               ge->iy2 += dy / 4;
+                       }
+                       /* make sure that it's still on the same side */
+                       if (abs(x3 - x0) * abs(dy) < abs(y3 - y0) * abs(dx)) {
+                               if (abs(x3 - x0) * abs(ge->iy2 - y3) > abs(y3 - y0) * abs(ge->ix2 - x3))
+                                       ge->ix2 += isign(dx);
+                       } else {
+                               if (abs(x3 - x0) * abs(ge->iy2 - y3) < abs(y3 - y0) * abs(ge->ix2 - x3))
+                                       ge->iy2 += isign(dy);
+                       }
+
+                       ge->ix1 += (x0 - x1) / 8;
+                       ge->iy1 += (y0 - y1) / 8;
+                       /* make sure that it's still on the same side */
+                       if (abs(x3 - x0) * abs(y0 - y1) < abs(y3 - y0) * abs(x0 - x1)) {
+                               if (abs(x3 - x0) * abs(y0 - ge->iy1) > abs(y3 - y0) * abs(x0 - ge->ix1))
+                                       ge->iy1 -= isign(y0 - y1);
+                       } else {
+                               if (abs(x3 - x0) * abs(y0 - ge->iy1) < abs(y3 - y0) * abs(x0 - ge->ix1))
+                                       ge->ix1 -= isign(x0 - x1);
+                       }
+
+               }
+       }
+}
+
+/* if we have any curves that are in fact flat but
+** are not horizontal nor vertical, substitute
+** them also with lines
+*/
+
+void
+flattencurves(
+             GLYPH * g
+)
+{
+       GENTRY         *ge;
+       int             x0, y0, x1, y1, x2, y2, x3, y3;
+
+       assertisint(g, "flattencurves INT");
+
+       for (ge = g->entries; ge != 0; ge = ge->next) {
+               if (ge->type != GE_CURVE)
+                       continue;
+
+               x0 = ge->prev->ix3;
+               y0 = ge->prev->iy3;
+               x1 = ge->ix1;
+               y1 = ge->iy1;
+               x2 = ge->ix2;
+               y2 = ge->iy2;
+               x3 = ge->ix3;
+               y3 = ge->iy3;
+
+               if ((x1 - x0) * (y2 - y1) == (x2 - x1) * (y1 - y0)
+                   && (x1 - x0) * (y3 - y2) == (x3 - x2) * (y1 - y0)) {
+                       ge->type = GE_LINE;
+               }
+       }
+}
+
+/*
+** After transformations we want to make sure that the resulting
+** curve is going in the same quadrant as the original one,
+** because rounding errors introduced during transformations
+** may make the result completeley wrong.
+**
+** `dir' argument describes the direction of the original curve,
+** it is the superposition of two values for the front and
+** rear ends of curve:
+**
+** >EQUAL - goes over the line connecting the ends
+** =EQUAL - coincides with the line connecting the ends
+** <EQUAL - goes under the line connecting the ends
+**
+** See CVDIR_* for exact definitions.
+*/
+
+static void
+fixcvdir(
+        GENTRY * ge,
+        int dir
+)
+{
+       int             a, b, c, d;
+       double          kk, kk1, kk2;
+       int             changed;
+       int             fdir, rdir;
+
+       if(ge->flags & GEF_FLOAT) {
+               fprintf(stderr, "**! fixcvdir(0x%x) on floating entry, ABORT\n", ge);
+               abort(); /* dump core */
+       }
+
+       fdir = (dir & CVDIR_FRONT) - CVDIR_FEQUAL;
+       if ((dir & CVDIR_REAR) == CVDIR_RSAME)
+               rdir = fdir; /* we need only isign, exact value doesn't matter */
+       else
+               rdir = (dir & CVDIR_REAR) - CVDIR_REQUAL;
+
+       fixcvends(ge);
+
+       c = isign(ge->ix3 - ge->prev->ix3);     /* note the direction of
+                                                * curve */
+       d = isign(ge->iy3 - ge->prev->iy3);
+
+       a = ge->iy3 - ge->prev->iy3;
+       b = ge->ix3 - ge->prev->ix3;
+       kk = fabs(a == 0 ? (b == 0 ? 1. : 100000.) : ((double) b / (double) a));
+       a = ge->iy1 - ge->prev->iy3;
+       b = ge->ix1 - ge->prev->ix3;
+       kk1 = fabs(a == 0 ? (b == 0 ? 1. : 100000.) : ((double) b / (double) a));
+       a = ge->iy3 - ge->iy2;
+       b = ge->ix3 - ge->ix2;
+       kk2 = fabs(a == 0 ? (b == 0 ? 1. : 100000.) : ((double) b / (double) a));
+
+       changed = 1;
+       while (changed) {
+               if (ISDBG(FIXCVDIR)) {
+                       /* for debugging */
+                       fprintf(stderr, "fixcvdir %d %d (%d %d %d %d %d %d) %f %f %f\n",
+                               fdir, rdir,
+                               ge->ix1 - ge->prev->ix3,
+                               ge->iy1 - ge->prev->iy3,
+                               ge->ix2 - ge->ix1,
+                               ge->iy2 - ge->iy1,
+                               ge->ix3 - ge->ix2,
+                               ge->iy3 - ge->iy2,
+                               kk1, kk, kk2);
+               }
+               changed = 0;
+
+               if (fdir > 0) {
+                       if (kk1 > kk) { /* the front end has problems */
+                               if (c * (ge->ix1 - ge->prev->ix3) > 0) {
+                                       ge->ix1 -= c;
+                                       changed = 1;
+                               } if (d * (ge->iy2 - ge->iy1) > 0) {
+                                       ge->iy1 += d;
+                                       changed = 1;
+                               }
+                               /* recalculate the coefficients */
+                               a = ge->iy3 - ge->prev->iy3;
+                               b = ge->ix3 - ge->prev->ix3;
+                               kk = fabs(a == 0 ? (b == 0 ? 1. : 100000.) : ((double) b / (double) a));
+                               a = ge->iy1 - ge->prev->iy3;
+                               b = ge->ix1 - ge->prev->ix3;
+                               kk1 = fabs(a == 0 ? (b == 0 ? 1. : 100000.) : ((double) b / (double) a));
+                       }
+               } else if (fdir < 0) {
+                       if (kk1 < kk) { /* the front end has problems */
+                               if (c * (ge->ix2 - ge->ix1) > 0) {
+                                       ge->ix1 += c;
+                                       changed = 1;
+                               } if (d * (ge->iy1 - ge->prev->iy3) > 0) {
+                                       ge->iy1 -= d;
+                                       changed = 1;
+                               }
+                               /* recalculate the coefficients */
+                               a = ge->iy1 - ge->prev->iy3;
+                               b = ge->ix1 - ge->prev->ix3;
+                               kk1 = fabs(a == 0 ? (b == 0 ? 1. : 100000.) : ((double) b / (double) a));
+                               a = ge->iy3 - ge->prev->iy3;
+                               b = ge->ix3 - ge->prev->ix3;
+                               kk = fabs(a == 0 ? (b == 0 ? 1. : 100000.) : ((double) b / (double) a));
+                       }
+               }
+               if (rdir > 0) {
+                       if (kk2 < kk) { /* the rear end has problems */
+                               if (c * (ge->ix2 - ge->ix1) > 0) {
+                                       ge->ix2 -= c;
+                                       changed = 1;
+                               } if (d * (ge->iy3 - ge->iy2) > 0) {
+                                       ge->iy2 += d;
+                                       changed = 1;
+                               }
+                               /* recalculate the coefficients */
+                               a = ge->iy3 - ge->prev->iy3;
+                               b = ge->ix3 - ge->prev->ix3;
+                               kk = fabs(a == 0 ? (b == 0 ? 1. : 100000.) : ((double) b / (double) a));
+                               a = ge->iy3 - ge->iy2;
+                               b = ge->ix3 - ge->ix2;
+                               kk2 = fabs(a == 0 ? (b == 0 ? 1. : 100000.) : ((double) b / (double) a));
+                       }
+               } else if (rdir < 0) {
+                       if (kk2 > kk) { /* the rear end has problems */
+                               if (c * (ge->ix3 - ge->ix2) > 0) {
+                                       ge->ix2 += c;
+                                       changed = 1;
+                               } if (d * (ge->iy2 - ge->iy1) > 0) {
+                                       ge->iy2 -= d;
+                                       changed = 1;
+                               }
+                               /* recalculate the coefficients */
+                               a = ge->iy3 - ge->prev->iy3;
+                               b = ge->ix3 - ge->prev->ix3;
+                               kk = fabs(a == 0 ? (b == 0 ? 1. : 100000.) : ((double) b / (double) a));
+                               a = ge->iy3 - ge->iy2;
+                               b = ge->ix3 - ge->ix2;
+                               kk2 = fabs(a == 0 ? (b == 0 ? 1. : 100000.) : ((double) b / (double) a));
+                       }
+               }
+       }
+       fixcvends(ge);
+}
+
+/* Get the directions of ends of curve for further usage */
+
+/* expects that the previous element is also float */
+
+static int
+fgetcvdir(
+        GENTRY * ge
+)
+{
+       double          a, b;
+       double          k, k1, k2;
+       int             dir = 0;
+
+       if( !(ge->flags & GEF_FLOAT) ) {
+               fprintf(stderr, "**! fgetcvdir(0x%x) on int entry, ABORT\n", ge);
+               abort(); /* dump core */
+       }
+
+       a = ge->fy3 - ge->prev->fy3;
+       b = ge->fx3 - ge->prev->fx3;
+       k = fabs(a == 0 ? (b == 0 ? 1. : 100000.) : ( b / a));
+       a = ge->fy1 - ge->prev->fy3;
+       b = ge->fx1 - ge->prev->fx3;
+       k1 = fabs(a == 0 ? (b == 0 ? 1. : 100000.) : ( b / a));
+       a = ge->fy3 - ge->fy2;
+       b = ge->fx3 - ge->fx2;
+       k2 = fabs(a == 0 ? (b == 0 ? 1. : 100000.) : ( b / a));
+
+       if (k1 < k)
+               dir |= CVDIR_FUP;
+       else if (k1 > k)
+               dir |= CVDIR_FDOWN;
+       else
+               dir |= CVDIR_FEQUAL;
+
+       if (k2 > k)
+               dir |= CVDIR_RUP;
+       else if (k2 < k)
+               dir |= CVDIR_RDOWN;
+       else
+               dir |= CVDIR_REQUAL;
+
+       return dir;
+}
+
+
+/* expects that the previous element is also int */
+
+static int
+igetcvdir(
+        GENTRY * ge
+)
+{
+       int             a, b;
+       double          k, k1, k2;
+       int             dir = 0;
+
+       if(ge->flags & GEF_FLOAT) {
+               fprintf(stderr, "**! igetcvdir(0x%x) on floating entry, ABORT\n", ge);
+               abort(); /* dump core */
+       }
+
+       a = ge->iy3 - ge->prev->iy3;
+       b = ge->ix3 - ge->prev->ix3;
+       k = fabs(a == 0 ? (b == 0 ? 1. : 100000.) : ((double) b / (double) a));
+       a = ge->iy1 - ge->prev->iy3;
+       b = ge->ix1 - ge->prev->ix3;
+       k1 = fabs(a == 0 ? (b == 0 ? 1. : 100000.) : ((double) b / (double) a));
+       a = ge->iy3 - ge->iy2;
+       b = ge->ix3 - ge->ix2;
+       k2 = fabs(a == 0 ? (b == 0 ? 1. : 100000.) : ((double) b / (double) a));
+
+       if (k1 < k)
+               dir |= CVDIR_FUP;
+       else if (k1 > k)
+               dir |= CVDIR_FDOWN;
+       else
+               dir |= CVDIR_FEQUAL;
+
+       if (k2 > k)
+               dir |= CVDIR_RUP;
+       else if (k2 < k)
+               dir |= CVDIR_RDOWN;
+       else
+               dir |= CVDIR_REQUAL;
+
+       return dir;
+}
+
+#if 0
+/* a function just to test the work of fixcvdir() */
+static void
+testfixcvdir(
+            GLYPH * g
+)
+{
+       GENTRY         *ge;
+       int             dir;
+
+       for (ge = g->entries; ge != 0; ge = ge->next) {
+               if (ge->type == GE_CURVE) {
+                       dir = igetcvdir(ge);
+                       fixcvdir(ge, dir);
+               }
+       }
+}
+#endif
+
+static int
+iround(
+       double val
+)
+{
+       return (int) (val > 0 ? val + 0.5 : val - 0.5);
+}
+       
+/* for debugging - dump the glyph
+ * mark with a star the entries from start to end inclusive
+ * (start == NULL means don't mark any, end == NULL means to the last)
+ */
+
+void
+dumppaths(
+       GLYPH *g,
+       GENTRY *start,
+       GENTRY *end
+)
+{
+       GENTRY *ge;
+       int i;
+       char mark=' ';
+
+       fprintf(stderr, "Glyph %s:\n", g->name);
+
+       /* now do the conversion */
+       for(ge = g->entries; ge != 0; ge = ge->next) {
+               if(ge == start)
+                       mark = '*';
+               fprintf(stderr, " %c %8x", mark, ge);
+               switch(ge->type) {
+               case GE_MOVE:
+               case GE_LINE:
+                       if(ge->flags & GEF_FLOAT)
+                               fprintf(stderr," %c float (%g, %g)\n", ge->type, ge->fx3, ge->fy3);
+                       else
+                               fprintf(stderr," %c int (%d, %d)\n", ge->type, ge->ix3, ge->iy3);
+                       break;
+               case GE_CURVE:
+                       if(ge->flags & GEF_FLOAT) {
+                               fprintf(stderr," C float ");
+                               for(i=0; i<3; i++)
+                                       fprintf(stderr,"(%g, %g) ", ge->fxn[i], ge->fyn[i]);
+                               fprintf(stderr,"\n");
+                       } else {
+                               fprintf(stderr," C int ");
+                               for(i=0; i<3; i++)
+                                       fprintf(stderr,"(%d, %d) ", ge->ixn[i], ge->iyn[i]);
+                               fprintf(stderr,"\n");
+                       }
+                       break;
+               default:
+                       fprintf(stderr, " %c\n", ge->type);
+                       break;
+               }
+               if(ge == end)
+                       mark = ' ';
+       }
+}
+
+/*
+ * Routine that converts all entries in the path from float to int
+ */
+
+void
+pathtoint(
+       GLYPH *g
+)
+{
+       GENTRY *ge;
+       int x[3], y[3];
+       int i;
+
+
+       if(ISDBG(TOINT))
+               fprintf(stderr, "TOINT: glyph %s\n", g->name);
+       assertisfloat(g, "converting path to int\n");
+
+       fdelsmall(g, 1.0); /* get rid of sub-pixel contours */
+       assertpath(g->entries, __FILE__, __LINE__, g->name);
+
+       /* 1st pass, collect the directions of the curves: have
+        * to do that in advance, while everyting is float
+        */
+       for(ge = g->entries; ge != 0; ge = ge->next) {
+               if( !(ge->flags & GEF_FLOAT) ) {
+                       fprintf(stderr, "**! glyphs %s has int entry, found in conversion to int\n",
+                               g->name);
+                       exit(1);
+               }
+               if(ge->type == GE_CURVE) {
+                       ge->dir = fgetcvdir(ge);
+               }
+       }
+
+       /* now do the conversion */
+       for(ge = g->entries; ge != 0; ge = ge->next) {
+               switch(ge->type) {
+               case GE_MOVE:
+               case GE_LINE:
+                       if(ISDBG(TOINT))
+                               fprintf(stderr," %c float x=%g y=%g\n", ge->type, ge->fx3, ge->fy3);
+                       x[0] = iround(ge->fx3);
+                       y[0] = iround(ge->fy3);
+                       for(i=0; i<3; i++) { /* put some valid values everywhere, for convenience */
+                               ge->ixn[i] = x[0];
+                               ge->iyn[i] = y[0];
+                       }
+                       if(ISDBG(TOINT))
+                               fprintf(stderr,"   int   x=%d y=%d\n", ge->ix3, ge->iy3);
+                       break;
+               case GE_CURVE:
+                       if(ISDBG(TOINT))
+                               fprintf(stderr," %c float ", ge->type);
+
+                       for(i=0; i<3; i++) {
+                               if(ISDBG(TOINT))
+                                       fprintf(stderr,"(%g, %g) ", ge->fxn[i], ge->fyn[i]);
+                               x[i] = iround(ge->fxn[i]);
+                               y[i] = iround(ge->fyn[i]);
+                       }
+
+                       if(ISDBG(TOINT))
+                               fprintf(stderr,"\n   int   ");
+
+                       for(i=0; i<3; i++) {
+                               ge->ixn[i] = x[i];
+                               ge->iyn[i] = y[i];
+                               if(ISDBG(TOINT))
+                                       fprintf(stderr,"(%d, %d) ", ge->ixn[i], ge->iyn[i]);
+                       }
+                       ge->flags &= ~GEF_FLOAT; /* for fixcvdir */
+                       fixcvdir(ge, ge->dir);
+
+                       if(ISDBG(TOINT)) {
+                               fprintf(stderr,"\n   fixed ");
+                               for(i=0; i<3; i++)
+                                       fprintf(stderr,"(%d, %d) ", ge->ixn[i], ge->iyn[i]);
+                               fprintf(stderr,"\n");
+                       }
+
+                       break;
+               }
+               ge->flags &= ~GEF_FLOAT;
+       }
+       g->flags &= ~GF_FLOAT;
+}
+
+
+/* check whether we can fix up the curve to change its size by (dx,dy) */
+/* 0 means NO, 1 means YES */
+
+/* for float: if scaling would be under 10% */
+
+int
+fcheckcv(
+       GENTRY * ge,
+       double dx,
+       double dy
+)
+{
+       if( !(ge->flags & GEF_FLOAT) ) {
+               fprintf(stderr, "**! fcheckcv(0x%x) on int entry, ABORT\n", ge);
+               abort(); /* dump core */
+       }
+
+       if (ge->type != GE_CURVE)
+               return 0;
+
+       if( fabs(ge->fx3 - ge->prev->fx3) < fabs(dx) * 10 )
+               return 0;
+
+       if( fabs(ge->fy3 - ge->prev->fy3) < fabs(dy) * 10 )
+               return 0;
+
+       return 1;
+}
+
+/* for int: if won't create new zigzags at the ends */
+
+int
+icheckcv(
+       GENTRY * ge,
+       int dx,
+       int dy
+)
+{
+       int             xdep, ydep;
+
+       if(ge->flags & GEF_FLOAT) {
+               fprintf(stderr, "**! icheckcv(0x%x) on floating entry, ABORT\n", ge);
+               abort(); /* dump core */
+       }
+
+       if (ge->type != GE_CURVE)
+               return 0;
+
+       xdep = ge->ix3 - ge->prev->ix3;
+       ydep = ge->iy3 - ge->prev->iy3;
+
+       if (ge->type == GE_CURVE
+           && (xdep * (xdep + dx)) > 0
+           && (ydep * (ydep + dy)) > 0) {
+               return 1;
+       } else
+               return 0;
+}
+
+/* float connect the ends of open contours */
+
+void
+fclosepaths(
+          GLYPH * g
+)
+{
+       GENTRY         *ge, *fge, *xge, *nge;
+       int             i;
+
+       assertisfloat(g, "fclosepaths float\n");
+
+       for (xge = g->entries; xge != 0; xge = xge->next) {
+               if( xge->type != GE_PATH )
+                       continue;
+
+               ge = xge->prev;
+               if(ge == 0 || ge->type != GE_LINE && ge->type!= GE_CURVE) {
+                       fprintf(stderr, "**! Glyph %s got empty path\n",
+                               g->name);
+                       exit(1);
+               }
+
+               fge = ge->frwd;
+               if (fge->prev == 0 || fge->prev->type != GE_MOVE) {
+                       fprintf(stderr, "**! Glyph %s got strange beginning of path\n",
+                               g->name);
+                       exit(1);
+               }
+               fge = fge->prev;
+               if (fge->fx3 != ge->fx3 || fge->fy3 != ge->fy3) {
+                       /* we have to fix this open path */
+
+                       WARNING_4 fprintf(stderr, "Glyph %s got path open by dx=%g dy=%g\n",
+                       g->name, fge->fx3 - ge->fx3, fge->fy3 - ge->fy3);
+
+
+                       /* add a new line */
+                       nge = newgentry(GEF_FLOAT);
+                       (*nge) = (*ge);
+                       nge->fx3 = fge->fx3;
+                       nge->fy3 = fge->fy3;
+                       nge->type = GE_LINE;
+
+                       addgeafter(ge, nge);
+
+                       if (fabs(ge->fx3 - fge->fx3) <= 2 && fabs(ge->fy3 - fge->fy3) <= 2) {
+                               /*
+                                * small change, try to get rid of the new entry
+                                */
+
+                               double df[2];
+
+                               for(i=0; i<2; i++) {
+                                       df[i] = ge->fpoints[i][2] - fge->fpoints[i][2];
+                                       df[i] = fclosegap(nge, nge, i, df[i], NULL);
+                               }
+
+                               if(df[0] == 0. && df[1] == 0.) {
+                                       /* closed gap successfully, remove the added entry */
+                                       freethisge(nge);
+                               }
+                       }
+               }
+       }
+}
+
+void
+smoothjoints(
+            GLYPH * g
+)
+{
+       GENTRY         *ge, *ne;
+       int             dx1, dy1, dx2, dy2, k;
+       int             dir;
+
+       return; /* this stuff seems to create problems */
+
+       assertisint(g, "smoothjoints int");
+
+       if (g->entries == 0)    /* nothing to do */
+               return;
+
+       for (ge = g->entries->next; ge != 0; ge = ge->next) {
+               ne = ge->frwd;
+
+               /*
+                * although there should be no one-line path * and any path
+                * must end with CLOSEPATH, * nobody can say for sure
+                */
+
+               if (ge == ne || ne == 0)
+                       continue;
+
+               /* now handle various joints */
+
+               if (ge->type == GE_LINE && ne->type == GE_LINE) {
+                       dx1 = ge->ix3 - ge->prev->ix3;
+                       dy1 = ge->iy3 - ge->prev->iy3;
+                       dx2 = ne->ix3 - ge->ix3;
+                       dy2 = ne->iy3 - ge->iy3;
+
+                       /* check whether they have the same direction */
+                       /* and the same slope */
+                       /* then we can join them into one line */
+
+                       if (dx1 * dx2 >= 0 && dy1 * dy2 >= 0 && dx1 * dy2 == dy1 * dx2) {
+                               /* extend the previous line */
+                               ge->ix3 = ne->ix3;
+                               ge->iy3 = ne->iy3;
+
+                               /* and get rid of the next line */
+                               freethisge(ne);
+                       }
+               } else if (ge->type == GE_LINE && ne->type == GE_CURVE) {
+                       fixcvends(ne);
+
+                       dx1 = ge->ix3 - ge->prev->ix3;
+                       dy1 = ge->iy3 - ge->prev->iy3;
+                       dx2 = ne->ix1 - ge->ix3;
+                       dy2 = ne->iy1 - ge->iy3;
+
+                       /* if the line is nearly horizontal and we can fix it */
+                       if (dx1 != 0 && 5 * abs(dy1) / abs(dx1) == 0
+                           && icheckcv(ne, 0, -dy1)
+                           && abs(dy1) <= 4) {
+                               dir = igetcvdir(ne);
+                               ge->iy3 -= dy1;
+                               ne->iy1 -= dy1;
+                               fixcvdir(ne, dir);
+                               if (ge->next != ne)
+                                       ne->prev->iy3 -= dy1;
+                               dy1 = 0;
+                       } else if (dy1 != 0 && 5 * abs(dx1) / abs(dy1) == 0
+                                  && icheckcv(ne, -dx1, 0)
+                                  && abs(dx1) <= 4) {
+                               /* the same but vertical */
+                               dir = igetcvdir(ne);
+                               ge->ix3 -= dx1;
+                               ne->ix1 -= dx1;
+                               fixcvdir(ne, dir);
+                               if (ge->next != ne)
+                                       ne->prev->ix3 -= dx1;
+                               dx1 = 0;
+                       }
+                       /*
+                        * if line is horizontal and curve begins nearly
+                        * horizontally
+                        */
+                       if (dy1 == 0 && dx2 != 0 && 5 * abs(dy2) / abs(dx2) == 0) {
+                               dir = igetcvdir(ne);
+                               ne->iy1 -= dy2;
+                               fixcvdir(ne, dir);
+                               dy2 = 0;
+                       } else if (dx1 == 0 && dy2 != 0 && 5 * abs(dx2) / abs(dy2) == 0) {
+                               /* the same but vertical */
+                               dir = igetcvdir(ne);
+                               ne->ix1 -= dx2;
+                               fixcvdir(ne, dir);
+                               dx2 = 0;
+                       }
+               } else if (ge->type == GE_CURVE && ne->type == GE_LINE) {
+                       fixcvends(ge);
+
+                       dx1 = ge->ix3 - ge->ix2;
+                       dy1 = ge->iy3 - ge->iy2;
+                       dx2 = ne->ix3 - ge->ix3;
+                       dy2 = ne->iy3 - ge->iy3;
+
+                       /* if the line is nearly horizontal and we can fix it */
+                       if (dx2 != 0 && 5 * abs(dy2) / abs(dx2) == 0
+                           && icheckcv(ge, 0, dy2)
+                           && abs(dy2) <= 4) {
+                               dir = igetcvdir(ge);
+                               ge->iy3 += dy2;
+                               ge->iy2 += dy2;
+                               fixcvdir(ge, dir);
+                               if (ge->next != ne)
+                                       ne->prev->iy3 += dy2;
+                               dy2 = 0;
+                       } else if (dy2 != 0 && 5 * abs(dx2) / abs(dy2) == 0
+                                  && icheckcv(ge, dx2, 0)
+                                  && abs(dx2) <= 4) {
+                               /* the same but vertical */
+                               dir = igetcvdir(ge);
+                               ge->ix3 += dx2;
+                               ge->ix2 += dx2;
+                               fixcvdir(ge, dir);
+                               if (ge->next != ne)
+                                       ne->prev->ix3 += dx2;
+                               dx2 = 0;
+                       }
+                       /*
+                        * if line is horizontal and curve ends nearly
+                        * horizontally
+                        */
+                       if (dy2 == 0 && dx1 != 0 && 5 * abs(dy1) / abs(dx1) == 0) {
+                               dir = igetcvdir(ge);
+                               ge->iy2 += dy1;
+                               fixcvdir(ge, dir);
+                               dy1 = 0;
+                       } else if (dx2 == 0 && dy1 != 0 && 5 * abs(dx1) / abs(dy1) == 0) {
+                               /* the same but vertical */
+                               dir = igetcvdir(ge);
+                               ge->ix2 += dx1;
+                               fixcvdir(ge, dir);
+                               dx1 = 0;
+                       }
+               } else if (ge->type == GE_CURVE && ne->type == GE_CURVE) {
+                       fixcvends(ge);
+                       fixcvends(ne);
+
+                       dx1 = ge->ix3 - ge->ix2;
+                       dy1 = ge->iy3 - ge->iy2;
+                       dx2 = ne->ix1 - ge->ix3;
+                       dy2 = ne->iy1 - ge->iy3;
+
+                       /*
+                        * check if we have a rather smooth joint at extremal
+                        * point
+                        */
+                       /* left or right extremal point */
+                       if (abs(dx1) <= 4 && abs(dx2) <= 4
+                           && dy1 != 0 && 5 * abs(dx1) / abs(dy1) == 0
+                           && dy2 != 0 && 5 * abs(dx2) / abs(dy2) == 0
+                           && (ge->iy3 < ge->prev->iy3 && ne->iy3 < ge->iy3
+                               || ge->iy3 > ge->prev->iy3 && ne->iy3 > ge->iy3)
+                         && (ge->ix3 - ge->prev->ix3) * (ne->ix3 - ge->ix3) < 0
+                               ) {
+                               dir = igetcvdir(ge);
+                               ge->ix2 += dx1;
+                               dx1 = 0;
+                               fixcvdir(ge, dir);
+                               dir = igetcvdir(ne);
+                               ne->ix1 -= dx2;
+                               dx2 = 0;
+                               fixcvdir(ne, dir);
+                       }
+                       /* top or down extremal point */
+                       else if (abs(dy1) <= 4 && abs(dy2) <= 4
+                                && dx1 != 0 && 5 * abs(dy1) / abs(dx1) == 0
+                                && dx2 != 0 && 5 * abs(dy2) / abs(dx2) == 0
+                                && (ge->ix3 < ge->prev->ix3 && ne->ix3 < ge->ix3
+                               || ge->ix3 > ge->prev->ix3 && ne->ix3 > ge->ix3)
+                                && (ge->iy3 - ge->prev->iy3) * (ne->iy3 - ge->iy3) < 0
+                               ) {
+                               dir = igetcvdir(ge);
+                               ge->iy2 += dy1;
+                               dy1 = 0;
+                               fixcvdir(ge, dir);
+                               dir = igetcvdir(ne);
+                               ne->iy1 -= dy2;
+                               dy2 = 0;
+                               fixcvdir(ne, dir);
+                       }
+                       /* or may be we just have a smooth junction */
+                       else if (dx1 * dx2 >= 0 && dy1 * dy2 >= 0
+                                && 10 * abs(k = abs(dx1 * dy2) - abs(dy1 * dx2)) < (abs(dx1 * dy2) + abs(dy1 * dx2))) {
+                               int             tries[6][4];
+                               int             results[6];
+                               int             i, b;
+
+                               /* build array of changes we are going to try */
+                               /* uninitalized entries are 0 */
+                               if (k > 0) {
+                                       static int      t1[6][4] = {
+                                               {0, 0, 0, 0},
+                                               {-1, 0, 1, 0},
+                                               {-1, 0, 0, 1},
+                                               {0, -1, 1, 0},
+                                               {0, -1, 0, 1},
+                                       {-1, -1, 1, 1}};
+                                       memcpy(tries, t1, sizeof tries);
+                               } else {
+                                       static int      t1[6][4] = {
+                                               {0, 0, 0, 0},
+                                               {1, 0, -1, 0},
+                                               {1, 0, 0, -1},
+                                               {0, 1, -1, 0},
+                                               {0, 1, 0, -1},
+                                       {1, 1, -1, -1}};
+                                       memcpy(tries, t1, sizeof tries);
+                               }
+
+                               /* now try the changes */
+                               results[0] = abs(k);
+                               for (i = 1; i < 6; i++) {
+                                       results[i] = abs((abs(dx1) + tries[i][0]) * (abs(dy2) + tries[i][1]) -
+                                                        (abs(dy1) + tries[i][2]) * (abs(dx2) + tries[i][3]));
+                               }
+
+                               /* and find the best try */
+                               k = abs(k);
+                               b = 0;
+                               for (i = 1; i < 6; i++)
+                                       if (results[i] < k) {
+                                               k = results[i];
+                                               b = i;
+                                       }
+                               /* and finally apply it */
+                               if (dx1 < 0)
+                                       tries[b][0] = -tries[b][0];
+                               if (dy2 < 0)
+                                       tries[b][1] = -tries[b][1];
+                               if (dy1 < 0)
+                                       tries[b][2] = -tries[b][2];
+                               if (dx2 < 0)
+                                       tries[b][3] = -tries[b][3];
+
+                               dir = igetcvdir(ge);
+                               ge->ix2 -= tries[b][0];
+                               ge->iy2 -= tries[b][2];
+                               fixcvdir(ge, dir);
+                               dir = igetcvdir(ne);
+                               ne->ix1 += tries[b][3];
+                               ne->iy1 += tries[b][1];
+                               fixcvdir(ne, dir);
+                       }
+               }
+       }
+}
+
+/* debugging: print out stems of a glyph */
+static void
+debugstems(
+          char *name,
+          STEM * hstems,
+          int nhs,
+          STEM * vstems,
+          int nvs
+)
+{
+       int             i;
+
+       fprintf(pfa_file, "%% %s\n", name);
+       fprintf(pfa_file, "%% %d horizontal stems:\n", nhs);
+       for (i = 0; i < nhs; i++)
+               fprintf(pfa_file, "%% %3d    %d (%d...%d) %c %c%c%c%c\n", i, hstems[i].value,
+                       hstems[i].from, hstems[i].to,
+                       ((hstems[i].flags & ST_UP) ? 'U' : 'D'),
+                       ((hstems[i].flags & ST_END) ? 'E' : '-'),
+                       ((hstems[i].flags & ST_FLAT) ? 'F' : '-'),
+                       ((hstems[i].flags & ST_ZONE) ? 'Z' : ' '),
+                       ((hstems[i].flags & ST_TOPZONE) ? 'T' : ' '));
+       fprintf(pfa_file, "%% %d vertical stems:\n", nvs);
+       for (i = 0; i < nvs; i++)
+               fprintf(pfa_file, "%% %3d    %d (%d...%d) %c %c%c\n", i, vstems[i].value,
+                       vstems[i].from, vstems[i].to,
+                       ((vstems[i].flags & ST_UP) ? 'U' : 'D'),
+                       ((vstems[i].flags & ST_END) ? 'E' : '-'),
+                       ((vstems[i].flags & ST_FLAT) ? 'F' : '-'));
+}
+
+/* add pseudo-stems for the limits of the Blue zones to the stem array */
+static int
+addbluestems(
+       STEM *s,
+       int n
+)
+{
+       int i;
+
+       for(i=0; i<nblues && i<2; i+=2) { /* baseline */
+               s[n].value=bluevalues[i];
+               s[n].flags=ST_UP|ST_ZONE;
+               /* don't overlap with anything */
+               s[n].origin=s[n].from=s[n].to= -10000+i;
+               n++;
+               s[n].value=bluevalues[i+1];
+               s[n].flags=ST_ZONE;
+               /* don't overlap with anything */
+               s[n].origin=s[n].from=s[n].to= -10000+i+1;
+               n++;
+       }
+       for(i=2; i<nblues; i+=2) { /* top zones */
+               s[n].value=bluevalues[i];
+               s[n].flags=ST_UP|ST_ZONE|ST_TOPZONE;
+               /* don't overlap with anything */
+               s[n].origin=s[n].from=s[n].to= -10000+i;
+               n++;
+               s[n].value=bluevalues[i+1];
+               s[n].flags=ST_ZONE|ST_TOPZONE;
+               /* don't overlap with anything */
+               s[n].origin=s[n].from=s[n].to= -10000+i+1;
+               n++;
+       }
+       for(i=0; i<notherb; i+=2) { /* bottom zones */
+               s[n].value=otherblues[i];
+               s[n].flags=ST_UP|ST_ZONE;
+               /* don't overlap with anything */
+               s[n].origin=s[n].from=s[n].to= -10000+i+nblues;
+               n++;
+               s[n].value=otherblues[i+1];
+               s[n].flags=ST_ZONE;
+               /* don't overlap with anything */
+               s[n].origin=s[n].from=s[n].to= -10000+i+1+nblues;
+               n++;
+       }
+       return n;
+}
+
+/* sort stems in array */
+static void
+sortstems(
+         STEM * s,
+         int n
+)
+{
+       int             i, j;
+       STEM            x;
+
+
+       /* a simple sorting */
+       /* hm, the ordering criteria are not quite simple :-) 
+        * if the values are tied
+        * ST_UP always goes under not ST_UP
+        * ST_ZONE goes on the most outer side
+        * ST_END goes towards inner side after ST_ZONE
+        * ST_FLAT goes on the inner side
+        */
+
+       for (i = 0; i < n; i++)
+               for (j = i + 1; j < n; j++) {
+                       if(s[i].value < s[j].value)
+                               continue;
+                       if(s[i].value == s[j].value) {
+                               if( (s[i].flags & ST_UP) < (s[j].flags & ST_UP) )
+                                       continue;
+                               if( (s[i].flags & ST_UP) == (s[j].flags & ST_UP) ) {
+                                       if( s[i].flags & ST_UP ) {
+                                               if(
+                                               (s[i].flags & (ST_ZONE|ST_FLAT|ST_END) ^ ST_FLAT)
+                                                       >
+                                               (s[j].flags & (ST_ZONE|ST_FLAT|ST_END) ^ ST_FLAT)
+                                               )
+                                                       continue;
+                                       } else {
+                                               if(
+                                               (s[i].flags & (ST_ZONE|ST_FLAT|ST_END) ^ ST_FLAT)
+                                                       <
+                                               (s[j].flags & (ST_ZONE|ST_FLAT|ST_END) ^ ST_FLAT)
+                                               )
+                                                       continue;
+                                       }
+                               }
+                       }
+                       x = s[j];
+                       s[j] = s[i];
+                       s[i] = x;
+               }
+}
+
+/* check whether two stem borders overlap */
+
+static int
+stemoverlap(
+           STEM * s1,
+           STEM * s2
+)
+{
+       int             result;
+
+       if (s1->from <= s2->from && s1->to >= s2->from
+           || s2->from <= s1->from && s2->to >= s1->from)
+               result = 1;
+       else
+               result = 0;
+
+       if (ISDBG(STEMOVERLAP))
+               fprintf(pfa_file, "%% overlap %d(%d..%d)x%d(%d..%d)=%d\n",
+                       s1->value, s1->from, s1->to, s2->value, s2->from, s2->to, result);
+       return result;
+}
+
+/* 
+ * check if the stem [border] is in an appropriate blue zone
+ * (currently not used)
+ */
+
+static int
+steminblue(
+       STEM *s
+)
+{
+       int i, val;
+
+       val=s->value;
+       if(s->flags & ST_UP) {
+               /* painted size up, look at lower zones */
+               if(nblues>=2 && val>=bluevalues[0] && val<=bluevalues[1] )
+                       return 1;
+               for(i=0; i<notherb; i++) {
+                       if( val>=otherblues[i] && val<=otherblues[i+1] )
+                               return 1;
+               }
+       } else {
+               /* painted side down, look at upper zones */
+               for(i=2; i<nblues; i++) {
+                       if( val>=bluevalues[i] && val<=bluevalues[i+1] )
+                               return 1;
+               }
+       }
+
+       return 0;
+}
+
+/* mark the outermost stem [borders] in the blue zones */
+
+static void
+markbluestems(
+       STEM *s,
+       int nold
+)
+{
+       int i, j, a, b, c;
+       /*
+        * traverse the list of Blue Values, mark the lowest upper
+        * stem in each bottom zone and the topmost lower stem in
+        * each top zone with ST_BLUE
+        */
+
+       /* top zones */
+       for(i=2; i<nblues; i+=2) {
+               a=bluevalues[i]; b=bluevalues[i+1];
+               if(ISDBG(BLUESTEMS))
+                       fprintf(pfa_file, "%% looking at blue zone %d...%d\n", a, b);
+               for(j=nold-1; j>=0; j--) {
+                       if( s[j].flags & (ST_ZONE|ST_UP|ST_END) )
+                               continue;
+                       c=s[j].value;
+                       if(c<a) /* too low */
+                               break;
+                       if(c<=b) { /* found the topmost stem border */
+                               /* mark all the stems with the same value */
+                               if(ISDBG(BLUESTEMS))
+                                       fprintf(pfa_file, "%% found D BLUE at %d\n", s[j].value);
+                               /* include ST_END values */
+                               while( s[j+1].value==c && (s[j+1].flags & ST_ZONE)==0 )
+                                       j++;
+                               s[j].flags |= ST_BLUE;
+                               for(j--; j>=0 && s[j].value==c 
+                                               && (s[j].flags & (ST_UP|ST_ZONE))==0 ; j--)
+                                       s[j].flags |= ST_BLUE;
+                               break;
+                       }
+               }
+       }
+       /* baseline */
+       if(nblues>=2) {
+               a=bluevalues[0]; b=bluevalues[1];
+               for(j=0; j<nold; j++) {
+                       if( (s[j].flags & (ST_ZONE|ST_UP|ST_END))!=ST_UP )
+                               continue;
+                       c=s[j].value;
+                       if(c>b) /* too high */
+                               break;
+                       if(c>=a) { /* found the lowest stem border */
+                               /* mark all the stems with the same value */
+                               if(ISDBG(BLUESTEMS))
+                                       fprintf(pfa_file, "%% found U BLUE at %d\n", s[j].value);
+                               /* include ST_END values */
+                               while( s[j-1].value==c && (s[j-1].flags & ST_ZONE)==0 )
+                                       j--;
+                               s[j].flags |= ST_BLUE;
+                               for(j++; j<nold && s[j].value==c
+                                               && (s[j].flags & (ST_UP|ST_ZONE))==ST_UP ; j++)
+                                       s[j].flags |= ST_BLUE;
+                               break;
+                       }
+               }
+       }
+       /* bottom zones: the logic is the same as for baseline */
+       for(i=0; i<notherb; i+=2) {
+               a=otherblues[i]; b=otherblues[i+1];
+               for(j=0; j<nold; j++) {
+                       if( (s[j].flags & (ST_UP|ST_ZONE|ST_END))!=ST_UP )
+                               continue;
+                       c=s[j].value;
+                       if(c>b) /* too high */
+                               break;
+                       if(c>=a) { /* found the lowest stem border */
+                               /* mark all the stems with the same value */
+                               if(ISDBG(BLUESTEMS))
+                                       fprintf(pfa_file, "%% found U BLUE at %d\n", s[j].value);
+                               /* include ST_END values */
+                               while( s[j-1].value==c && (s[j-1].flags & ST_ZONE)==0 )
+                                       j--;
+                               s[j].flags |= ST_BLUE;
+                               for(j++; j<nold && s[j].value==c
+                                               && (s[j].flags & (ST_UP|ST_ZONE))==ST_UP ; j++)
+                                       s[j].flags |= ST_BLUE;
+                               break;
+                       }
+               }
+       }
+}
+
+/* Eliminate invalid stems, join equivalent lines and remove nested stems
+ * to build the main (non-substituted) set of stems.
+ * XXX add consideration of the italic angle
+ */
+static int
+joinmainstems(
+         STEM * s,
+         int nold,
+         int useblues /* do we use the blue values ? */
+)
+{
+#define MAX_STACK      1000
+       STEM            stack[MAX_STACK];
+       int             nstack = 0;
+       int             sbottom = 0;
+       int             nnew;
+       int             i, j, k;
+       int             a, b, c, w1, w2, w3;
+       int             fw, fd;
+       /*
+        * priority of the last found stem: 
+        * 0 - nothing found yet 
+        * 1 - has ST_END in it (one or more) 
+        * 2 - has no ST_END and no ST_FLAT, can override only one stem 
+        *     with priority 1 
+        * 3 - has no ST_END and at least one ST_FLAT, can override one 
+        *     stem with priority 2 or any number of stems with priority 1
+        * 4 (handled separately) - has ST_BLUE, can override anything
+        */
+       int             readystem = 0;
+       int             pri;
+       int             nlps = 0;       /* number of non-committed
+                                        * lowest-priority stems */
+
+
+       for (i = 0, nnew = 0; i < nold; i++) {
+               if (s[i].flags & (ST_UP|ST_ZONE)) {
+                       if(s[i].flags & ST_BLUE) {
+                               /* we just HAVE to use this value */
+                               if (readystem)
+                                       nnew += 2;
+                               readystem=0;
+
+                               /* remember the list of Blue zone stems with the same value */
+                               for(a=i, i++; i<nold && s[a].value==s[i].value
+                                       && (s[i].flags & ST_BLUE); i++)
+                                       {}
+                               b=i; /* our range is a <= i < b */
+                               c= -1; /* index of our best guess up to now */
+                               pri=0;
+                               /* try to find a match, don't cross blue zones */
+                               for(; i<nold && (s[i].flags & ST_BLUE)==0; i++) {
+                                       if(s[i].flags & ST_UP) {
+                                               if(s[i].flags & ST_TOPZONE)
+                                                       break;
+                                               else
+                                                       continue;
+                                       }
+                                       for(j=a; j<b; j++) {
+                                               if(!stemoverlap(&s[j], &s[i]) )
+                                                       continue;
+                                               /* consider priorities */
+                                               if( ( (s[j].flags|s[i].flags) & (ST_FLAT|ST_END) )==ST_FLAT ) {
+                                                       c=i;
+                                                       goto bluematch;
+                                               }
+                                               if( ((s[j].flags|s[i].flags) & ST_END)==0 )  {
+                                                       if(pri < 2) {
+                                                               c=i; pri=2;
+                                                       }
+                                               } else {
+                                                       if(pri == 0) {
+                                                               c=i; pri=1;
+                                                       }
+                                               }
+                                       }
+                               }
+                       bluematch:
+                               /* clean up the stack */
+                               nstack=sbottom=0;
+                               readystem=0;
+                               /* add this stem */
+                               s[nnew++]=s[a];
+                               if(c<0) { /* make one-dot-wide stem */
+                                       if(nnew>=b) { /* have no free space */
+                                               for(j=nold; j>=b; j--) /* make free space */
+                                                       s[j]=s[j-1];
+                                               b++;
+                                               nold++;
+                                       }
+                                       s[nnew]=s[a];
+                                       s[nnew].flags &= ~(ST_UP|ST_BLUE);
+                                       nnew++;
+                                       i=b-1;
+                               } else {
+                                       s[nnew++]=s[c];
+                                       i=c; /* skip up to this point */
+                               }
+                               if (ISDBG(MAINSTEMS))
+                                       fprintf(pfa_file, "%% +stem %d...%d U BLUE\n",
+                                               s[nnew-2].value, s[nnew-1].value);
+                       } else {
+                               if (nstack >= MAX_STACK) {
+                                       WARNING_1 fprintf(stderr, "Warning: **** converter's stem stack overflow ****\n");
+                                       nstack = 0;
+                               }
+                               stack[nstack++] = s[i];
+                       }
+               } else if(s[i].flags & ST_BLUE) {
+                       /* again, we just HAVE to use this value */
+                       if (readystem)
+                               nnew += 2;
+                       readystem=0;
+
+                       /* remember the list of Blue zone stems with the same value */
+                       for(a=i, i++; i<nold && s[a].value==s[i].value
+                               && (s[i].flags & ST_BLUE); i++)
+                               {}
+                       b=i; /* our range is a <= i < b */
+                       c= -1; /* index of our best guess up to now */
+                       pri=0;
+                       /* try to find a match */
+                       for (i = nstack - 1; i >= 0; i--) {
+                               if( (stack[i].flags & ST_UP)==0 ) {
+                                       if( (stack[i].flags & (ST_ZONE|ST_TOPZONE))==ST_ZONE )
+                                               break;
+                                       else
+                                               continue;
+                               }
+                               for(j=a; j<b; j++) {
+                                       if(!stemoverlap(&s[j], &stack[i]) )
+                                               continue;
+                                       /* consider priorities */
+                                       if( ( (s[j].flags|stack[i].flags) & (ST_FLAT|ST_END) )==ST_FLAT ) {
+                                               c=i;
+                                               goto bluedownmatch;
+                                       }
+                                       if( ((s[j].flags|stack[i].flags) & ST_END)==0 )  {
+                                               if(pri < 2) {
+                                                       c=i; pri=2;
+                                               }
+                                       } else {
+                                               if(pri == 0) {
+                                                       c=i; pri=1;
+                                               }
+                                       }
+                               }
+                       }
+               bluedownmatch:
+                       /* if found no match make a one-dot-wide stem */
+                       if(c<0) {
+                               c=0;
+                               stack[0]=s[b-1];
+                               stack[0].flags |= ST_UP;
+                               stack[0].flags &= ~ST_BLUE;
+                       }
+                       /* remove all the stems conflicting with this one */
+                       readystem=0;
+                       for(j=nnew-2; j>=0; j-=2) {
+                               if (ISDBG(MAINSTEMS))
+                                       fprintf(pfa_file, "%% ?stem %d...%d -- %d\n",
+                                               s[j].value, s[j+1].value, stack[c].value);
+                               if(s[j+1].value < stack[c].value) /* no conflict */
+                                       break;
+                               if(s[j].flags & ST_BLUE) {
+                                       /* oops, we don't want to spoil other blue zones */
+                                       stack[c].value=s[j+1].value+1;
+                                       break;
+                               }
+                               if( (s[j].flags|s[j+1].flags) & ST_END ) {
+                                       if (ISDBG(MAINSTEMS))
+                                               fprintf(pfa_file, "%% -stem %d...%d p=1\n",
+                                                       s[j].value, s[j+1].value);
+                                       continue; /* pri==1, silently discard it */
+                               }
+                               /* we want to discard no nore than 2 stems of pri>=2 */
+                               if( ++readystem > 2 ) {
+                                       /* change our stem to not conflict */
+                                       stack[c].value=s[j+1].value+1;
+                                       break;
+                               } else {
+                                       if (ISDBG(MAINSTEMS))
+                                               fprintf(pfa_file, "%% -stem %d...%d p>=2\n",
+                                                       s[j].value, s[j+1].value);
+                                       continue;
+                               }
+                       }
+                       nnew=j+2;
+                       /* add this stem */
+                       if(nnew>=b-1) { /* have no free space */
+                               for(j=nold; j>=b-1; j--) /* make free space */
+                                       s[j]=s[j-1];
+                               b++;
+                               nold++;
+                       }
+                       s[nnew++]=stack[c];
+                       s[nnew++]=s[b-1];
+                       /* clean up the stack */
+                       nstack=sbottom=0;
+                       readystem=0;
+                       /* set the next position to search */
+                       i=b-1;
+                       if (ISDBG(MAINSTEMS))
+                               fprintf(pfa_file, "%% +stem %d...%d D BLUE\n",
+                                       s[nnew-2].value, s[nnew-1].value);
+               } else if (nstack > 0) {
+
+                       /*
+                        * check whether our stem overlaps with anything in
+                        * stack
+                        */
+                       for (j = nstack - 1; j >= sbottom; j--) {
+                               if (s[i].value <= stack[j].value)
+                                       break;
+                               if (stack[j].flags & ST_ZONE)
+                                       continue;
+
+                               if ((s[i].flags & ST_END)
+                                   || (stack[j].flags & ST_END))
+                                       pri = 1;
+                               else if ((s[i].flags & ST_FLAT)
+                                        || (stack[j].flags & ST_FLAT))
+                                       pri = 3;
+                               else
+                                       pri = 2;
+
+                               if (pri < readystem && s[nnew + 1].value >= stack[j].value
+                                   || !stemoverlap(&stack[j], &s[i]))
+                                       continue;
+
+                               if (readystem > 1 && s[nnew + 1].value < stack[j].value) {
+                                       nnew += 2;
+                                       readystem = 0;
+                                       nlps = 0;
+                               }
+                               /*
+                                * width of the previous stem (if it's
+                                * present)
+                                */
+                               w1 = s[nnew + 1].value - s[nnew].value;
+
+                               /* width of this stem */
+                               w2 = s[i].value - stack[j].value;
+
+                               if (readystem == 0) {
+                                       /* nothing yet, just add a new stem */
+                                       s[nnew] = stack[j];
+                                       s[nnew + 1] = s[i];
+                                       readystem = pri;
+                                       if (pri == 1)
+                                               nlps = 1;
+                                       else if (pri == 2)
+                                               sbottom = j;
+                                       else {
+                                               sbottom = j + 1;
+                                               while (sbottom < nstack
+                                                      && stack[sbottom].value <= stack[j].value)
+                                                       sbottom++;
+                                       }
+                                       if (ISDBG(MAINSTEMS))
+                                               fprintf(pfa_file, "%% +stem %d...%d p=%d n=%d\n",
+                                                       stack[j].value, s[i].value, pri, nlps);
+                               } else if (pri == 1) {
+                                       if (stack[j].value > s[nnew + 1].value) {
+                                               /*
+                                                * doesn't overlap with the
+                                                * previous one
+                                                */
+                                               nnew += 2;
+                                               nlps++;
+                                               s[nnew] = stack[j];
+                                               s[nnew + 1] = s[i];
+                                               if (ISDBG(MAINSTEMS))
+                                                       fprintf(pfa_file, "%% +stem %d...%d p=%d n=%d\n",
+                                                               stack[j].value, s[i].value, pri, nlps);
+                                       } else if (w2 < w1) {
+                                               /* is narrower */
+                                               s[nnew] = stack[j];
+                                               s[nnew + 1] = s[i];
+                                               if (ISDBG(MAINSTEMS))
+                                                       fprintf(pfa_file, "%% /stem %d...%d p=%d n=%d %d->%d\n",
+                                                               stack[j].value, s[i].value, pri, nlps, w1, w2);
+                                       }
+                               } else if (pri == 2) {
+                                       if (readystem == 2) {
+                                               /* choose the narrower stem */
+                                               if (w1 > w2) {
+                                                       s[nnew] = stack[j];
+                                                       s[nnew + 1] = s[i];
+                                                       sbottom = j;
+                                                       if (ISDBG(MAINSTEMS))
+                                                               fprintf(pfa_file, "%% /stem %d...%d p=%d n=%d\n",
+                                                                       stack[j].value, s[i].value, pri, nlps);
+                                               }
+                                               /* else readystem==1 */
+                                       } else if (stack[j].value > s[nnew + 1].value) {
+                                               /*
+                                                * value doesn't overlap with
+                                                * the previous one
+                                                */
+                                               nnew += 2;
+                                               nlps = 0;
+                                               s[nnew] = stack[j];
+                                               s[nnew + 1] = s[i];
+                                               sbottom = j;
+                                               readystem = pri;
+                                               if (ISDBG(MAINSTEMS))
+                                                       fprintf(pfa_file, "%% +stem %d...%d p=%d n=%d\n",
+                                                               stack[j].value, s[i].value, pri, nlps);
+                                       } else if (nlps == 1
+                                                  || stack[j].value > s[nnew - 1].value) {
+                                               /*
+                                                * we can replace the top
+                                                * stem
+                                                */
+                                               nlps = 0;
+                                               s[nnew] = stack[j];
+                                               s[nnew + 1] = s[i];
+                                               readystem = pri;
+                                               sbottom = j;
+                                               if (ISDBG(MAINSTEMS))
+                                                       fprintf(pfa_file, "%% /stem %d...%d p=%d n=%d\n",
+                                                               stack[j].value, s[i].value, pri, nlps);
+                                       }
+                               } else if (readystem == 3) {    /* that means also
+                                                                * pri==3 */
+                                       /* choose the narrower stem */
+                                       if (w1 > w2) {
+                                               s[nnew] = stack[j];
+                                               s[nnew + 1] = s[i];
+                                               sbottom = j + 1;
+                                               while (sbottom < nstack
+                                                      && stack[sbottom].value <= stack[j].value)
+                                                       sbottom++;
+                                               if (ISDBG(MAINSTEMS))
+                                                       fprintf(pfa_file, "%% /stem %d...%d p=%d n=%d\n",
+                                                               stack[j].value, s[i].value, pri, nlps);
+                                       }
+                               } else if (pri == 3) {
+                                       /*
+                                        * we can replace as many stems as
+                                        * neccessary
+                                        */
+                                       nnew += 2;
+                                       while (nnew > 0 && s[nnew - 1].value >= stack[j].value) {
+                                               nnew -= 2;
+                                               if (ISDBG(MAINSTEMS))
+                                                       fprintf(pfa_file, "%% -stem %d..%d\n",
+                                                               s[nnew].value, s[nnew + 1].value);
+                                       }
+                                       nlps = 0;
+                                       s[nnew] = stack[j];
+                                       s[nnew + 1] = s[i];
+                                       readystem = pri;
+                                       sbottom = j + 1;
+                                       while (sbottom < nstack
+                                              && stack[sbottom].value <= stack[j].value)
+                                               sbottom++;
+                                       if (ISDBG(MAINSTEMS))
+                                               fprintf(pfa_file, "%% +stem %d...%d p=%d n=%d\n",
+                                                       stack[j].value, s[i].value, pri, nlps);
+                               }
+                       }
+               }
+       }
+       if (readystem)
+               nnew += 2;
+
+       /* change the 1-pixel-wide stems to 20-pixel-wide stems if possible 
+        * the constant 20 is recommended in the Type1 manual 
+        */
+       if(useblues) {
+               for(i=0; i<nnew; i+=2) {
+                       if(s[i].value != s[i+1].value)
+                               continue;
+                       if( ((s[i].flags ^ s[i+1].flags) & ST_BLUE)==0 )
+                               continue;
+                       if( s[i].flags & ST_BLUE ) {
+                               if(nnew>i+2 && s[i+2].value<s[i].value+22)
+                                       s[i+1].value=s[i+2].value-2; /* compensate for fuzziness */
+                               else
+                                       s[i+1].value+=20;
+                       } else {
+                               if(i>0 && s[i-1].value>s[i].value-22)
+                                       s[i].value=s[i-1].value+2; /* compensate for fuzziness */
+                               else
+                                       s[i].value-=20;
+                       }
+               }
+       }
+       /* make sure that no stem it stretched between
+        * a top zone and a bottom zone
+        */
+       if(useblues) {
+               for(i=0; i<nnew; i+=2) {
+                       a=10000; /* lowest border of top zone crosing the stem */
+                       b= -10000; /* highest border of bottom zone crossing the stem */
+
+                       for(j=2; j<nblues; j++) {
+                               c=bluevalues[j];
+                               if( c>=s[i].value && c<=s[i+1].value && c<a )
+                                       a=c;
+                       }
+                       if(nblues>=2) {
+                               c=bluevalues[1];
+                               if( c>=s[i].value && c<=s[i+1].value && c>b )
+                                       b=c;
+                       }
+                       for(j=1; j<notherb; j++) {
+                               c=otherblues[j];
+                               if( c>=s[i].value && c<=s[i+1].value && c>b )
+                                       b=c;
+                       }
+                       if( a!=10000 && b!= -10000 ) { /* it is stretched */
+                               /* split the stem into 2 ghost stems */
+                               for(j=nnew+1; j>i+1; j--) /* make free space */
+                                       s[j]=s[j-2];
+                               nnew+=2;
+
+                               if(s[i].value+22 >= a)
+                                       s[i+1].value=a-2; /* leave space for fuzziness */
+                               else
+                                       s[i+1].value=s[i].value+20;
+
+                               if(s[i+3].value-22 <= b)
+                                       s[i+2].value=b+2; /* leave space for fuzziness */
+                               else
+                                       s[i+2].value=s[i+3].value-20;
+
+                               i+=2;
+                       }
+               }
+       }
+       /* look for triple stems */
+       for (i = 0; i < nnew; i += 2) {
+               if (nnew - i >= 6) {
+                       a = s[i].value + s[i + 1].value;
+                       b = s[i + 2].value + s[i + 3].value;
+                       c = s[i + 4].value + s[i + 5].value;
+
+                       w1 = s[i + 1].value - s[i].value;
+                       w2 = s[i + 3].value - s[i + 2].value;
+                       w3 = s[i + 5].value - s[i + 4].value;
+
+                       fw = w3 - w1;   /* fuzz in width */
+                       fd = ((c - b) - (b - a));       /* fuzz in distance
+                                                        * (doubled) */
+
+                       /* we are able to handle some fuzz */
+                       /*
+                        * it doesn't hurt if the declared stem is a bit
+                        * narrower than actual unless it's an edge in
+                        * a blue zone
+                        */
+                       if (abs(abs(fd) - abs(fw)) * 5 < w2
+                           && abs(fw) * 20 < (w1 + w3)) {      /* width dirrerence <10% */
+
+                               if(useblues) { /* check that we don't disturb any blue stems */
+                                       j=c; k=a;
+                                       if (fw > 0) {
+                                               if (fd > 0) {
+                                                       if( s[i+5].flags & ST_BLUE )
+                                                               continue;
+                                                       j -= fw;
+                                               } else {
+                                                       if( s[i+4].flags & ST_BLUE )
+                                                               continue;
+                                                       j += fw;
+                                               }
+                                       } else if(fw < 0) {
+                                               if (fd > 0) {
+                                                       if( s[i+1].flags & ST_BLUE )
+                                                               continue;
+                                                       k -= fw;
+                                               } else {
+                                                       if( s[i].flags & ST_BLUE )
+                                                               continue;
+                                                       k += fw;
+                                               }
+                                       }
+                                       pri = ((j - b) - (b - k));
+
+                                       if (pri > 0) {
+                                               if( s[i+2].flags & ST_BLUE )
+                                                       continue;
+                                       } else if(pri < 0) {
+                                               if( s[i+3].flags & ST_BLUE )
+                                                       continue;
+                                       }
+                               }
+
+                               /*
+                                * first fix up the width of 1st and 3rd
+                                * stems
+                                */
+                               if (fw > 0) {
+                                       if (fd > 0) {
+                                               s[i + 5].value -= fw;
+                                               c -= fw;
+                                       } else {
+                                               s[i + 4].value += fw;
+                                               c += fw;
+                                       }
+                               } else {
+                                       if (fd > 0) {
+                                               s[i + 1].value -= fw;
+                                               a -= fw;
+                                       } else {
+                                               s[i].value += fw;
+                                               a += fw;
+                                       }
+                               }
+                               fd = ((c - b) - (b - a));
+
+                               if (fd > 0) {
+                                       s[i + 2].value += abs(fd) / 2;
+                               } else {
+                                       s[i + 3].value -= abs(fd) / 2;
+                               }
+
+                               s[i].flags |= ST_3;
+                               i += 4;
+                       }
+               }
+       }
+
+       return (nnew & ~1);     /* number of lines must be always even */
+}
+
+/*
+ * these macros and function allow to set the base stem,
+ * check that it's not empty and subtract another stem
+ * from the base stem (possibly dividing it into multiple parts)
+ */
+
+/* pairs for pieces of the base stem */
+static short xbstem[MAX_STEMS*2]; 
+/* index of the last point */
+static int xblast= -1; 
+
+#define setbasestem(from, to) \
+       (xbstem[0]=from, xbstem[1]=to, xblast=1)
+#define isbaseempty()  (xblast<=0)
+
+/* returns 1 if was overlapping, 0 otherwise */
+static int
+subfrombase(
+       int from,
+       int to
+) 
+{
+       int a, b;
+       int i, j;
+
+       if(isbaseempty())
+               return 0;
+
+       /* handle the simple case simply */
+       if(from > xbstem[xblast] || to < xbstem[0])
+               return 0;
+
+       /* the binary search may be more efficient */
+       /* but for now the linear search is OK */
+       for(b=1; from > xbstem[b]; b+=2) {} /* result: from <= xbstem[b] */
+       for(a=xblast-1; to < xbstem[a]; a-=2) {} /* result: to >= xbstem[a] */
+
+       /* now the interesting examples are:
+        * (it was hard for me to understand, so I looked at the examples)
+        * 1
+        *     a|-----|          |-----|b   |-----|     |-----|
+        *              f|-----|t
+        * 2
+        *     a|-----|b         |-----|    |-----|     |-----|
+        *      f|--|t
+        * 3
+        *     a|-----|b         |-----|    |-----|     |-----|
+        *           f|-----|t
+        * 4
+        *      |-----|b        a|-----|    |-----|     |-----|
+        *          f|------------|t
+        * 5
+        *      |-----|          |-----|b   |-----|    a|-----|
+        *                   f|-----------------------------|t
+        * 6
+        *      |-----|b         |-----|    |-----|    a|-----|
+        *   f|--------------------------------------------------|t
+        * 7
+        *      |-----|b         |-----|   a|-----|     |-----|
+        *          f|--------------------------|t
+        */
+
+       if(a < b-1) /* hits a gap  - example 1 */
+               return 0;
+
+       /* now the subtraction itself */
+
+       if(a==b-1 && from > xbstem[a] && to < xbstem[b]) {
+               /* overlaps with only one subrange and splits it - example 2 */
+               j=xblast; i=(xblast+=2);
+               while(j>=b)
+                       xbstem[i--]=xbstem[j--];
+               xbstem[b]=from-1;
+               xbstem[b+1]=to+1;
+               return 1;
+       /* becomes
+        * 2a
+        *     a|b   ||          |-----|    |-----|     |-----|
+        *      f|--|t
+        */
+       }
+
+       if(xbstem[b-1] < from) {
+               /* cuts the back of this subrange - examples 3, 4, 7 */
+               xbstem[b] = from-1;
+               b+=2;
+       /* becomes
+        * 3a
+        *     a|----|           |-----|b   |-----|     |-----|
+        *           f|-----|t
+        * 4a
+        *      |---|           a|-----|b   |-----|     |-----|
+        *          f|------------|t
+        * 7a
+        *      |---|            |-----|b  a|-----|     |-----|
+        *          f|--------------------------|t
+        */
+       }
+
+       if(xbstem[a+1] > to) {
+               /* cuts the front of this subrange - examples 4a, 5, 7a */
+               xbstem[a] = to+1;
+               a-=2;
+       /* becomes
+        * 4b
+        *     a|---|              |---|b   |-----|     |-----|
+        *          f|------------|t
+        * 5b
+        *      |-----|          |-----|b  a|-----|          ||
+        *                   f|-----------------------------|t
+        * 7b
+        *      |---|           a|-----|b        ||     |-----|
+        *          f|--------------------------|t
+        */
+       }
+
+       if(a < b-1) /* now after modification it hits a gap - examples 3a, 4b */
+               return 1; /* because we have removed something */
+
+       /* now remove the subranges completely covered by the new stem */
+       /* examples 5b, 6, 7b */
+       i=b-1; j=a+2;
+       /* positioned as:
+        * 5b                    i                           j
+        *      |-----|          |-----|b  a|-----|          ||
+        *                   f|-----------------------------|t
+        * 6    i                                             xblast  j
+        *      |-----|b         |-----|    |-----|    a|-----|
+        *   f|--------------------------------------------------|t
+        * 7b                    i               j
+        *      |---|           a|-----|b        ||     |-----|
+        *          f|--------------------------|t
+        */
+       while(j <= xblast)
+               xbstem[i++]=xbstem[j++];
+       xblast=i-1;
+       return 1;
+}
+
+/* for debugging */
+static void
+printbasestem(void)
+{
+       int i;
+
+       printf("( ");
+       for(i=0; i<xblast; i+=2)
+               printf("%d-%d ", xbstem[i], xbstem[i+1]);
+       printf(") %d\n", xblast);
+}
+
+/*
+ * Join the stem borders to build the sets of substituted stems
+ * XXX add consideration of the italic angle
+ */
+static void
+joinsubstems(
+         STEM * s,
+         short *pairs,
+         int nold,
+         int useblues /* do we use the blue values ? */
+)
+{
+       int i, j, x;
+       static unsigned char mx[MAX_STEMS][MAX_STEMS];
+
+       /* we do the substituted groups of stems first
+        * and it looks like it's going to be REALLY SLOW 
+        * AND PAINFUL but let's bother about it later
+        */
+
+       /* for the substituted stems we don't bother about [hv]stem3 -
+        * anyway the X11R6 rasterizer does not bother about hstem3
+        * at all and is able to handle only one global vstem3
+        * per glyph 
+        */
+
+       /* clean the used part of matrix */
+       for(i=0; i<nold; i++)
+               for(j=0; j<nold; j++)
+                       mx[i][j]=0;
+
+       /* build the matrix of stem pairs */
+       for(i=0; i<nold; i++) {
+               if( s[i].flags & ST_ZONE )
+                       continue;
+               if(s[i].flags & ST_BLUE)
+                       mx[i][i]=1; /* allow to pair with itself if no better pair */
+               if(s[i].flags & ST_UP) { /* the down-stems are already matched */
+                       setbasestem(s[i].from, s[i].to);
+                       for(j=i+1; j<nold; j++) {
+                               if(s[i].value==s[j].value
+                               || s[j].flags & ST_ZONE ) {
+                                       continue;
+                               }
+                               x=subfrombase(s[j].from, s[j].to);
+
+                               if(s[j].flags & ST_UP) /* match only up+down pairs */
+                                       continue;
+
+                               mx[i][j]=mx[j][i]=x;
+
+                               if(isbaseempty()) /* nothing else to do */
+                                       break;
+                       }
+               }
+       }
+
+       if(ISDBG(SUBSTEMS)) {
+               fprintf(pfa_file, "%%     ");
+               for(j=0; j<nold; j++)
+                       putc( j%10==0 ? '0'+(j/10)%10 : ' ', pfa_file);
+               fprintf(pfa_file, "\n%%     ");
+               for(j=0; j<nold; j++)
+                       putc('0'+j%10, pfa_file);
+               putc('\n', pfa_file);
+               for(i=0; i<nold; i++) {
+                       fprintf(pfa_file, "%% %3d ",i);
+                       for(j=0; j<nold; j++)
+                               putc( mx[i][j] ? 'X' : '.', pfa_file);
+                       putc('\n', pfa_file);
+               }
+       }
+
+       /* now use the matrix to find the best pair for each stem */
+       for(i=0; i<nold; i++) {
+               int pri, lastpri, v, f;
+
+               x= -1; /* best pair: none */
+               lastpri=0;
+
+               v=s[i].value;
+               f=s[i].flags;
+
+               if(f & ST_ZONE) {
+                       pairs[i]= -1;
+                       continue;
+               }
+
+               if(f & ST_UP) {
+                       for(j=i+1; j<nold; j++) {
+                               if(mx[i][j]==0)
+                                       continue;
+
+                               if( (f | s[j].flags) & ST_END )
+                                       pri=1;
+                               else if( (f | s[j].flags) & ST_FLAT )
+                                       pri=3;
+                               else
+                                       pri=2;
+
+                               if(lastpri==0
+                               || pri > lastpri  
+                               && ( lastpri==1 || s[j].value-v<20 || (s[x].value-v)*2 >= s[j].value-v ) ) {
+                                       lastpri=pri;
+                                       x=j;
+                               }
+                       }
+               } else {
+                       for(j=i-1; j>=0; j--) {
+                               if(mx[i][j]==0)
+                                       continue;
+
+                               if( (f | s[j].flags) & ST_END )
+                                       pri=1;
+                               else if( (f | s[j].flags) & ST_FLAT )
+                                       pri=3;
+                               else
+                                       pri=2;
+
+                               if(lastpri==0
+                               || pri > lastpri  
+                               && ( lastpri==1 || v-s[j].value<20 || (v-s[x].value)*2 >= v-s[j].value ) ) {
+                                       lastpri=pri;
+                                       x=j;
+                               }
+                       }
+               }
+               if(x== -1 && mx[i][i])
+                       pairs[i]=i; /* a special case */
+               else
+                       pairs[i]=x;
+       }
+
+       if(ISDBG(SUBSTEMS)) {
+               for(i=0; i<nold; i++) {
+                       j=pairs[i];
+                       if(j>0)
+                               fprintf(pfa_file, "%% %d...%d  (%d x %d)\n", s[i].value, s[j].value, i, j);
+               }
+       }
+}
+
+/*
+ * Make all the stems originating at the same value get the
+ * same width. Without this the rasterizer may move the dots
+ * randomly up or down by one pixel, and that looks bad.
+ * The prioritisation is the same as in findstemat().
+ */
+static void
+uniformstems(
+         STEM * s,
+         short *pairs,
+         int ns
+)
+{
+       int i, j, from, to, val, dir;
+       int pri, prevpri[2], wd, prevwd[2], prevbest[2];
+
+       for(from=0; from<ns; from=to) {
+               prevpri[0] = prevpri[1] = 0;
+               prevwd[0] = prevwd[1] = 0;
+               prevbest[0] = prevbest[1] = -1;
+               val = s[from].value;
+
+               for(to = from; to<ns && s[to].value == val; to++) {
+                       dir = ((s[to].flags & ST_UP)!=0);
+
+                       i=pairs[to]; /* the other side of this stem */
+                       if(i<0 || i==to)
+                               continue; /* oops, no other side */
+                       wd=abs(s[i].value-val);
+                       if(wd == 0)
+                               continue;
+                       pri=1;
+                       if( (s[to].flags | s[i].flags) & ST_END )
+                               pri=0;
+                       if( prevbest[dir] == -1 || pri > prevpri[dir] || wd<prevwd[dir] ) {
+                               prevbest[dir]=i;
+                               prevpri[dir]=pri;
+                               prevwd[dir]=wd;
+                       }
+               }
+
+               for(i=from; i<to; i++) {
+                       dir = ((s[i].flags & ST_UP)!=0);
+                       if(prevbest[dir] >= 0) {
+                               if(ISDBG(SUBSTEMS)) {
+                                       fprintf(stderr, "at %d (%s %d) pair %d->%d(%d)\n", i, 
+                                               (dir ? "UP":"DOWN"), s[i].value, pairs[i], prevbest[dir],
+                                               s[prevbest[dir]].value);
+                               }
+                               pairs[i] = prevbest[dir];
+                       }
+               }
+       }
+}
+
+/* 
+ * Find the best stem in the array at the specified (value, origin),
+ * related to the entry ge.
+ * Returns its index in the array sp, -1 means "none".
+ * prevbest is the result for the other end of the line, we must 
+ * find something better than it or leave it as it is.
+ */
+static int
+findstemat(
+       int value,
+       int origin,
+       GENTRY *ge,
+       STEM *sp,
+       short *pairs,
+       int ns,
+       int prevbest /* -1 means "none" */
+)
+{
+       int i, min, max;
+       int v, si;
+       int pri, prevpri; /* priority, 0 = has ST_END, 1 = no ST_END */
+       int wd, prevwd; /* stem width */
+
+       si= -1; /* nothing yet */
+
+       /* stems are ordered by value, binary search */
+       min=0; max=ns; /* min <= i < max */
+       while( min < max ) {
+               i=(min+max)/2;
+               v=sp[i].value;
+               if(v<value)
+                       min=i+1;
+               else if(v>value)
+                       max=i;
+               else {
+                       si=i; /* temporary value */
+                       break;
+               }
+       }
+
+       if( si < 0 ) /* found nothing this time */
+               return prevbest;
+
+       /* find the priority of the prevbest */
+       /* we expect that prevbest has a pair */
+       if(prevbest>=0) {
+               i=pairs[prevbest];
+               prevpri=1;
+               if( (sp[prevbest].flags | sp[i].flags) & ST_END )
+                       prevpri=0; 
+               prevwd=abs(sp[i].value-value);
+       }
+
+       /* stems are not ordered by origin, so now do the linear search */
+
+       while( si>0 && sp[si-1].value==value ) /* find the first one */
+               si--;
+
+       for(; si<ns && sp[si].value==value; si++) {
+               if(sp[si].origin != origin) 
+                       continue;
+               if(sp[si].ge != ge) {
+                       if(ISDBG(SUBSTEMS)) {
+                               fprintf(stderr, 
+                                       "dbg: possible self-intersection at v=%d o=%d exp_ge=0x%x ge=0x%x\n",
+                                       value, origin, ge, sp[si].ge);
+                       }
+                       continue;
+               }
+               i=pairs[si]; /* the other side of this stem */
+               if(i<0)
+                       continue; /* oops, no other side */
+               pri=1;
+               if( (sp[si].flags | sp[i].flags) & ST_END )
+                       pri=0;
+               wd=abs(sp[i].value-value);
+               if( prevbest == -1 || pri >prevpri 
+               || pri==prevpri && prevwd==0 || wd!=0 && wd<prevwd ) {
+                       prevbest=si;
+                       prevpri=pri;
+                       prevwd=wd;
+                       continue;
+               }
+       }
+
+       return prevbest;
+}
+
+/* add the substems for one glyph entry 
+ * (called from groupsubstems())
+ * returns 0 if all OK, 1 if too many groups
+ */
+
+static int gssentry_lastgrp=0; /* reset to 0 for each new glyph */
+
+static int
+gssentry( /* crazy number of parameters */
+       GENTRY *ge,
+       STEM *hs, /* horizontal stems, sorted by value */
+       short *hpairs,
+       int nhs,
+       STEM *vs, /* vertical stems, sorted by value */
+       short *vpairs,
+       int nvs,
+       STEMBOUNDS *s,
+       short *egp,
+       int *nextvsi, 
+       int *nexthsi /* -2 means "check by yourself" */
+) {
+       enum {
+               SI_VP,  /* vertical primary */
+               SI_HP,  /* horizontal primary */
+               SI_SIZE /* size of the array */
+       };
+       int si[SI_SIZE]; /* indexes of relevant stems */
+
+       /* the bounds of the existing relevant stems */
+       STEMBOUNDS r[ sizeof(si) / sizeof(si[0]) * 2 ];
+       char rexpand; /* by how much we need to expand the group */
+       int nr; /* and the number of them */
+
+       /* yet more temporary storage */
+       short lb, hb, isvert;
+       int conflict, grp;
+       int i, j, x, y;
+
+
+       /* for each line or curve we try to find a horizontal and
+        * a vertical stem corresponding to its first point
+        * (corresponding to the last point of the previous
+        * glyph entry), because the directions of the lines
+        * will be eventually reversed and it will then become the last
+        * point. And the T1 rasterizer applies the hints to 
+        * the last point.
+        *
+        */
+
+       /* start with the common part, the first point */
+       x=ge->prev->ix3;
+       y=ge->prev->iy3;
+
+       if(*nextvsi == -2)
+               si[SI_VP]=findstemat(x, y, ge, vs, vpairs, nvs, -1);
+       else {
+               si[SI_VP]= *nextvsi; *nextvsi= -2;
+       }
+       if(*nexthsi == -2)
+               si[SI_HP]=findstemat(y, x, ge, hs, hpairs, nhs, -1);
+       else {
+               si[SI_HP]= *nexthsi; *nexthsi= -2;
+       }
+
+       /*
+        * For the horizontal lines we make sure that both
+        * ends of the line have the same horizontal stem,
+        * and the same thing for vertical lines and stems.
+        * In both cases we enforce the stem for the next entry.
+        * Otherwise unpleasant effects may arise.
+        */
+
+       if(ge->type==GE_LINE) {
+               if(ge->ix3==x) { /* vertical line */
+                       *nextvsi=si[SI_VP]=findstemat(x, ge->iy3, ge->frwd, vs, vpairs, nvs, si[SI_VP]);
+               } else if(ge->iy3==y) { /* horizontal line */
+                       *nexthsi=si[SI_HP]=findstemat(y, ge->ix3, ge->frwd, hs, hpairs, nhs, si[SI_HP]);
+               }
+       }
+
+       if(si[SI_VP]+si[SI_HP] == -2) /* no stems, leave it alone */
+               return 0;
+
+       /* build the array of relevant bounds */
+       nr=0;
+       for(i=0; i< sizeof(si) / sizeof(si[0]); i++) {
+               STEM *sp;
+               short *pairs;
+               int step;
+               int f;
+               int nzones, firstzone, binzone, einzone;
+               int btype, etype;
+
+               if(si[i] < 0)
+                       continue;
+
+               if(i<SI_HP) {
+                       r[nr].isvert=1; sp=vs; pairs=vpairs;
+               } else {
+                       r[nr].isvert=0; sp=hs; pairs=hpairs;
+               }
+
+               r[nr].low=sp[ si[i] ].value;
+               r[nr].high=sp[ pairs[ si[i] ] ].value;
+
+               if(r[nr].low > r[nr].high) {
+                       j=r[nr].low; r[nr].low=r[nr].high; r[nr].high=j;
+                       step= -1;
+               } else {
+                       step=1;
+               }
+
+               /* handle the interaction with Blue Zones */
+
+               if(i>=SI_HP) { /* only for horizontal stems */
+                       if(si[i]==pairs[si[i]]) {
+                               /* special case, the outermost stem in the
+                                * Blue Zone without a pair, simulate it to 20-pixel
+                                */
+                               if(sp[ si[i] ].flags & ST_UP) {
+                                       r[nr].high+=20;
+                                       for(j=si[i]+1; j<nhs; j++)
+                                               if( (sp[j].flags & (ST_ZONE|ST_TOPZONE))
+                                               == (ST_ZONE|ST_TOPZONE) ) {
+                                                       if(r[nr].high > sp[j].value-2)
+                                                               r[nr].high=sp[j].value-2;
+                                                       break;
+                                               }
+                               } else {
+                                       r[nr].low-=20;
+                                       for(j=si[i]-1; j>=0; j--)
+                                               if( (sp[j].flags & (ST_ZONE|ST_TOPZONE))
+                                               == (ST_ZONE) ) {
+                                                       if(r[nr].low < sp[j].value+2)
+                                                               r[nr].low=sp[j].value+2;
+                                                       break;
+                                               }
+                               }
+                       }
+
+                       /* check that the stem borders don't end up in
+                        * different Blue Zones */
+                       f=sp[ si[i] ].flags;
+                       nzones=0; einzone=binzone=0;
+                       for(j=si[i]; j!=pairs[ si[i] ]; j+=step) {
+                               if( (sp[j].flags & ST_ZONE)==0 )
+                                       continue;
+                               /* if see a zone border going in the same direction */
+                               if( ((f ^ sp[j].flags) & ST_UP)==0 ) {
+                                       if( ++nzones == 1 ) {
+                                               firstzone=sp[j].value; /* remember the first one */
+                                               etype=sp[j].flags & ST_TOPZONE;
+                                       }
+                                       einzone=1;
+
+                               } else { /* the opposite direction */
+                                       if(nzones==0) { /* beginning is in a blue zone */
+                                               binzone=1;
+                                               btype=sp[j].flags & ST_TOPZONE;
+                                       }
+                                       einzone=0;
+                               }
+                       }
+
+                       /* beginning and end are in Blue Zones of different types */
+                       if( binzone && einzone && (btype ^ etype)!=0 ) {
+                               if( sp[si[i]].flags & ST_UP ) {
+                                       if(firstzone > r[nr].low+22)
+                                               r[nr].high=r[nr].low+20;
+                                       else
+                                               r[nr].high=firstzone-2;
+                               } else {
+                                       if(firstzone < r[nr].high-22)
+                                               r[nr].low=r[nr].high-20;
+                                       else
+                                               r[nr].low=firstzone+2;
+                               }
+                       }
+               }
+
+               if(ISDBG(SUBSTEMS))
+                       fprintf(pfa_file, "%%  at(%d,%d)[%d,%d] %d..%d %c (%d x %d)\n", x, y, i, nr,
+                               r[nr].low, r[nr].high, r[nr].isvert ? 'v' : 'h',
+                               si[i], pairs[si[i]]);
+
+               nr++;
+       }
+
+       /* now try to find a group */
+       conflict=0; /* no conflicts found yet */
+       for(j=0; j<nr; j++)
+               r[j].already=0;
+
+       /* check if it fits into the last group */
+       grp = gssentry_lastgrp;
+       i = (grp==0)? 0 : egp[grp-1];
+       for(; i<egp[grp]; i++) {
+               lb=s[i].low; hb=s[i].high; isvert=s[i].isvert;
+               for(j=0; j<nr; j++)
+                       if( r[j].isvert==isvert  /* intersects */
+                       && r[j].low <= hb && r[j].high >= lb ) {
+                               if( r[j].low == lb && r[j].high == hb ) /* coincides */
+                                       r[j].already=1;
+                               else
+                                       conflict=1;
+                       }
+
+               if(conflict) 
+                       break;
+       }
+
+       if(conflict) { /* nope, check all the groups */
+               for(j=0; j<nr; j++)
+                       r[j].already=0;
+
+               for(i=0, grp=0; i<egp[NSTEMGRP-1]; i++) {
+                       if(i == egp[grp]) { /* checked all stems in a group */
+                               if(conflict) {
+                                       grp++; conflict=0; /* check the next group */
+                                       for(j=0; j<nr; j++)
+                                               r[j].already=0;
+                               } else
+                                       break; /* insert into this group */
+                       }
+
+                       lb=s[i].low; hb=s[i].high; isvert=s[i].isvert;
+                       for(j=0; j<nr; j++)
+                               if( r[j].isvert==isvert  /* intersects */
+                               && r[j].low <= hb && r[j].high >= lb ) {
+                                       if( r[j].low == lb && r[j].high == hb ) /* coincides */
+                                               r[j].already=1;
+                                       else
+                                               conflict=1;
+                               }
+
+                       if(conflict) 
+                               i=egp[grp]-1; /* fast forward to the next group */
+               }
+       }
+
+       /* do we have any empty group ? */
+       if(conflict && grp < NSTEMGRP-1) {
+               grp++; conflict=0;
+               for(j=0; j<nr; j++)
+                       r[j].already=0;
+       }
+
+       if(conflict) { /* oops, can't find any group to fit */
+               return 1;
+       }
+
+       /* OK, add stems to this group */
+
+       rexpand = nr;
+       for(j=0; j<nr; j++)
+               rexpand -= r[j].already;
+
+       if(rexpand > 0) {
+               for(i=egp[NSTEMGRP-1]-1; i>=egp[grp]; i--)
+                       s[i+rexpand]=s[i];
+               for(i=0; i<nr; i++)
+                       if(!r[i].already)
+                               s[egp[grp]++]=r[i];
+               for(i=grp+1; i<NSTEMGRP; i++)
+                       egp[i]+=rexpand;
+       }
+
+       ge->stemid = gssentry_lastgrp = grp;
+       return 0;
+}
+
+/*
+ * Create the groups of substituted stems from the list.
+ * Each group will be represented by a subroutine in the Subs
+ * array.
+ */
+
+static void
+groupsubstems(
+       GLYPH *g,
+       STEM *hs, /* horizontal stems, sorted by value */
+       short *hpairs,
+       int nhs,
+       STEM *vs, /* vertical stems, sorted by value */
+       short *vpairs,
+       int nvs
+)
+{
+       GENTRY *ge;
+       int i, j;
+
+       /* temporary storage */
+       STEMBOUNDS s[MAX_STEMS*2];
+       /* indexes in there, pointing past the end each stem group */
+       short egp[NSTEMGRP]; 
+
+       int nextvsi, nexthsi; /* -2 means "check by yourself" */
+
+       for(i=0; i<NSTEMGRP; i++)
+               egp[i]=0;
+
+       nextvsi=nexthsi= -2; /* processed no horiz/vert line */
+
+       gssentry_lastgrp = 0; /* reset the last group for new glyph */
+
+       for (ge = g->entries; ge != 0; ge = ge->next) {
+               if(ge->type!=GE_LINE && ge->type!=GE_CURVE) {
+                       nextvsi=nexthsi= -2; /* next path is independent */
+                       continue;
+               }
+
+               if( gssentry(ge, hs, hpairs, nhs, vs, vpairs, nvs, s, egp, &nextvsi, &nexthsi) ) {
+                       WARNING_2 fprintf(stderr, "*** glyph %s requires over %d hint subroutines, ignored them\n",
+                               g->name, NSTEMGRP);
+                       /* it's better to have no substituted hints at all than have only part */
+                       for (ge = g->entries; ge != 0; ge = ge->next)
+                               ge->stemid= -1;
+                       g->nsg=0; /* just to be safe, already is 0 by initialization */
+                       return;
+               }
+
+               /*
+                * handle the last vert/horiz line of the path specially,
+                * correct the hint for the first entry of the path
+                */
+               if(ge->frwd != ge->next && (nextvsi != -2 || nexthsi != -2) ) {
+                       if( gssentry(ge->frwd, hs, hpairs, nhs, vs, vpairs, nvs, s, egp, &nextvsi, &nexthsi) ) {
+                               WARNING_2 fprintf(stderr, "*** glyph %s requires over %d hint subroutines, ignored them\n",
+                                       g->name, NSTEMGRP);
+                               /* it's better to have no substituted hints at all than have only part */
+                               for (ge = g->entries; ge != 0; ge = ge->next)
+                                       ge->stemid= -1;
+                               g->nsg=0; /* just to be safe, already is 0 by initialization */
+                               return;
+                       }
+               }
+
+       }
+
+       /* find the index of the first empty group - same as the number of groups */
+       if(egp[0]>0) {
+               for(i=1; i<NSTEMGRP && egp[i]!=egp[i-1]; i++)
+                       {}
+               g->nsg=i;
+       } else
+               g->nsg=0;
+
+       if(ISDBG(SUBSTEMS)) {
+               fprintf(pfa_file, "%% %d substem groups (%d %d %d)\n", g->nsg,
+                       g->nsg>1 ? egp[g->nsg-2] : -1,
+                       g->nsg>0 ? egp[g->nsg-1] : -1,
+                       g->nsg<NSTEMGRP ? egp[g->nsg] : -1 );
+               j=0;
+               for(i=0; i<g->nsg; i++) {
+                       fprintf(pfa_file, "%% grp %3d:      ", i);
+                       for(; j<egp[i]; j++) {
+                               fprintf(pfa_file, " %4d...%-4d %c  ", s[j].low, s[j].high,
+                                       s[j].isvert ? 'v' : 'h');
+                       }
+                       fprintf(pfa_file, "\n");
+               }
+       }
+
+       if(g->nsg==1) { /* it would be the same as the main stems */
+               /* so erase it */
+               for (ge = g->entries; ge != 0; ge = ge->next)
+                       ge->stemid= -1;
+               g->nsg=0;
+       }
+
+       if(g->nsg>0) {
+               if( (g->nsbs=malloc(g->nsg * sizeof (egp[0]))) == 0 ) {
+                       fprintf(stderr, "**** not enough memory for substituted hints ****\n");
+                       exit(255);
+               }
+               memmove(g->nsbs, egp, g->nsg * sizeof(short));
+               if( (g->sbstems=malloc(egp[g->nsg-1] * sizeof (s[0]))) == 0 ) {
+                       fprintf(stderr, "**** not enough memory for substituted hints ****\n");
+                       exit(255);
+               }
+               memmove(g->sbstems, s, egp[g->nsg-1] * sizeof(s[0]));
+       }
+}
+
+void
+buildstems(
+          GLYPH * g
+)
+{
+       STEM            hs[MAX_STEMS], vs[MAX_STEMS];   /* temporary working
+                                                        * storage */
+       short   hs_pairs[MAX_STEMS], vs_pairs[MAX_STEMS]; /* best pairs for these stems */
+       STEM           *sp;
+       GENTRY         *ge, *nge, *pge;
+       int             nx, ny;
+       int ovalue;
+       int totals, grp, lastgrp;
+
+       assertisint(g, "buildstems int");
+
+       g->nhs = g->nvs = 0;
+       memset(hs, 0, sizeof hs);
+       memset(vs, 0, sizeof vs);
+
+       /* first search the whole character for possible stem points */
+
+       for (ge = g->entries; ge != 0; ge = ge->next) {
+               if (ge->type == GE_CURVE) {
+
+                       /*
+                        * SURPRISE! 
+                        * We consider the stems bound by the
+                        * H/V ends of the curves as flat ones.
+                        *
+                        * But we don't include the point on the
+                        * other end into the range.
+                        */
+
+                       /* first check the beginning of curve */
+                       /* if it is horizontal, add a hstem */
+                       if (ge->iy1 == ge->prev->iy3) {
+                               hs[g->nhs].value = ge->iy1;
+
+                               if (ge->ix1 < ge->prev->ix3)
+                                       hs[g->nhs].flags = ST_FLAT | ST_UP;
+                               else
+                                       hs[g->nhs].flags = ST_FLAT;
+
+                               hs[g->nhs].origin = ge->prev->ix3;
+                               hs[g->nhs].ge = ge;
+
+                               if (ge->ix1 < ge->prev->ix3) {
+                                       hs[g->nhs].from = ge->ix1+1;
+                                       hs[g->nhs].to = ge->prev->ix3;
+                                       if(hs[g->nhs].from > hs[g->nhs].to)
+                                               hs[g->nhs].from--;
+                               } else {
+                                       hs[g->nhs].from = ge->prev->ix3;
+                                       hs[g->nhs].to = ge->ix1-1;
+                                       if(hs[g->nhs].from > hs[g->nhs].to)
+                                               hs[g->nhs].to++;
+                               }
+                               if (ge->ix1 != ge->prev->ix3)
+                                       g->nhs++;
+                       }
+                       /* if it is vertical, add a vstem */
+                       else if (ge->ix1 == ge->prev->ix3) {
+                               vs[g->nvs].value = ge->ix1;
+
+                               if (ge->iy1 > ge->prev->iy3)
+                                       vs[g->nvs].flags = ST_FLAT | ST_UP;
+                               else
+                                       vs[g->nvs].flags = ST_FLAT;
+
+                               vs[g->nvs].origin = ge->prev->iy3;
+                               vs[g->nvs].ge = ge;
+
+                               if (ge->iy1 < ge->prev->iy3) {
+                                       vs[g->nvs].from = ge->iy1+1;
+                                       vs[g->nvs].to = ge->prev->iy3;
+                                       if(vs[g->nvs].from > vs[g->nvs].to)
+                                               vs[g->nvs].from--;
+                               } else {
+                                       vs[g->nvs].from = ge->prev->iy3;
+                                       vs[g->nvs].to = ge->iy1-1;
+                                       if(vs[g->nvs].from > vs[g->nvs].to)
+                                               vs[g->nvs].to++;
+                               }
+
+                               if (ge->iy1 != ge->prev->iy3)
+                                       g->nvs++;
+                       }
+                       /* then check the end of curve */
+                       /* if it is horizontal, add a hstem */
+                       if (ge->iy3 == ge->iy2) {
+                               hs[g->nhs].value = ge->iy3;
+
+                               if (ge->ix3 < ge->ix2)
+                                       hs[g->nhs].flags = ST_FLAT | ST_UP;
+                               else
+                                       hs[g->nhs].flags = ST_FLAT;
+
+                               hs[g->nhs].origin = ge->ix3;
+                               hs[g->nhs].ge = ge->frwd;
+
+                               if (ge->ix3 < ge->ix2) {
+                                       hs[g->nhs].from = ge->ix3;
+                                       hs[g->nhs].to = ge->ix2-1;
+                                       if( hs[g->nhs].from > hs[g->nhs].to )
+                                               hs[g->nhs].to++;
+                               } else {
+                                       hs[g->nhs].from = ge->ix2+1;
+                                       hs[g->nhs].to = ge->ix3;
+                                       if( hs[g->nhs].from > hs[g->nhs].to )
+                                               hs[g->nhs].from--;
+                               }
+
+                               if (ge->ix3 != ge->ix2)
+                                       g->nhs++;
+                       }
+                       /* if it is vertical, add a vstem */
+                       else if (ge->ix3 == ge->ix2) {
+                               vs[g->nvs].value = ge->ix3;
+
+                               if (ge->iy3 > ge->iy2)
+                                       vs[g->nvs].flags = ST_FLAT | ST_UP;
+                               else
+                                       vs[g->nvs].flags = ST_FLAT;
+
+                               vs[g->nvs].origin = ge->iy3;
+                               vs[g->nvs].ge = ge->frwd;
+
+                               if (ge->iy3 < ge->iy2) {
+                                       vs[g->nvs].from = ge->iy3;
+                                       vs[g->nvs].to = ge->iy2-1;
+                                       if( vs[g->nvs].from > vs[g->nvs].to )
+                                               vs[g->nvs].to++;
+                               } else {
+                                       vs[g->nvs].from = ge->iy2+1;
+                                       vs[g->nvs].to = ge->iy3;
+                                       if( vs[g->nvs].from > vs[g->nvs].to )
+                                               vs[g->nvs].from--;
+                               }
+
+                               if (ge->iy3 != ge->iy2)
+                                       g->nvs++;
+                       } else {
+
+                               /*
+                                * check the end of curve for a not smooth
+                                * local extremum
+                                */
+                               nge = ge->frwd;
+
+                               if (nge == 0)
+                                       continue;
+                               else if (nge->type == GE_LINE) {
+                                       nx = nge->ix3;
+                                       ny = nge->iy3;
+                               } else if (nge->type == GE_CURVE) {
+                                       nx = nge->ix1;
+                                       ny = nge->iy1;
+                               } else
+                                       continue;
+
+                               /* check for vertical extremums */
+                               if (ge->iy3 > ge->iy2 && ge->iy3 > ny
+                               || ge->iy3 < ge->iy2 && ge->iy3 < ny) {
+                                       hs[g->nhs].value = ge->iy3;
+                                       hs[g->nhs].from
+                                               = hs[g->nhs].to
+                                               = hs[g->nhs].origin = ge->ix3;
+                                       hs[g->nhs].ge = ge->frwd;
+
+                                       if (ge->ix3 < ge->ix2
+                                           || nx < ge->ix3)
+                                               hs[g->nhs].flags = ST_UP;
+                                       else
+                                               hs[g->nhs].flags = 0;
+
+                                       if (ge->ix3 != ge->ix2 || nx != ge->ix3)
+                                               g->nhs++;
+                               }
+                               /*
+                                * the same point may be both horizontal and
+                                * vertical extremum
+                                */
+                               /* check for horizontal extremums */
+                               if (ge->ix3 > ge->ix2 && ge->ix3 > nx
+                               || ge->ix3 < ge->ix2 && ge->ix3 < nx) {
+                                       vs[g->nvs].value = ge->ix3;
+                                       vs[g->nvs].from
+                                               = vs[g->nvs].to
+                                               = vs[g->nvs].origin = ge->iy3;
+                                       vs[g->nvs].ge = ge->frwd;
+
+                                       if (ge->iy3 > ge->iy2
+                                           || ny > ge->iy3)
+                                               vs[g->nvs].flags = ST_UP;
+                                       else
+                                               vs[g->nvs].flags = 0;
+
+                                       if (ge->iy3 != ge->iy2 || ny != ge->iy3)
+                                               g->nvs++;
+                               }
+                       }
+
+               } else if (ge->type == GE_LINE) {
+                       nge = ge->frwd;
+
+                       /* if it is horizontal, add a hstem */
+                       /* and the ends as vstems if they brace the line */
+                       if (ge->iy3 == ge->prev->iy3
+                       && ge->ix3 != ge->prev->ix3) {
+                               hs[g->nhs].value = ge->iy3;
+                               if (ge->ix3 < ge->prev->ix3) {
+                                       hs[g->nhs].flags = ST_FLAT | ST_UP;
+                                       hs[g->nhs].from = ge->ix3;
+                                       hs[g->nhs].to = ge->prev->ix3;
+                               } else {
+                                       hs[g->nhs].flags = ST_FLAT;
+                                       hs[g->nhs].from = ge->prev->ix3;
+                                       hs[g->nhs].to = ge->ix3;
+                               }
+                               hs[g->nhs].origin = ge->ix3;
+                               hs[g->nhs].ge = ge->frwd;
+
+                               pge = ge->bkwd;
+
+                               /* add beginning as vstem */
+                               vs[g->nvs].value = pge->ix3;
+                               vs[g->nvs].origin
+                                       = vs[g->nvs].from
+                                       = vs[g->nvs].to = pge->iy3;
+                               vs[g->nvs].ge = ge;
+
+                               if(pge->type==GE_CURVE)
+                                       ovalue=pge->iy2;
+                               else
+                                       ovalue=pge->prev->iy3;
+
+                               if (pge->iy3 > ovalue)
+                                       vs[g->nvs].flags = ST_UP | ST_END;
+                               else if (pge->iy3 < ovalue)
+                                       vs[g->nvs].flags = ST_END;
+                               else
+                                       vs[g->nvs].flags = 0;
+
+                               if( vs[g->nvs].flags != 0 )
+                                       g->nvs++;
+
+                               /* add end as vstem */
+                               vs[g->nvs].value = ge->ix3;
+                               vs[g->nvs].origin
+                                       = vs[g->nvs].from
+                                       = vs[g->nvs].to = ge->iy3;
+                               vs[g->nvs].ge = ge->frwd;
+
+                               if(nge->type==GE_CURVE)
+                                       ovalue=nge->iy1;
+                               else
+                                       ovalue=nge->iy3;
+
+                               if (ovalue > ge->iy3)
+                                       vs[g->nvs].flags = ST_UP | ST_END;
+                               else if (ovalue < ge->iy3)
+                                       vs[g->nvs].flags = ST_END;
+                               else
+                                       vs[g->nvs].flags = 0;
+
+                               if( vs[g->nvs].flags != 0 )
+                                       g->nvs++;
+
+                               g->nhs++;
+                       }
+                       /* if it is vertical, add a vstem */
+                       /* and the ends as hstems if they brace the line  */
+                       else if (ge->ix3 == ge->prev->ix3 
+                       && ge->iy3 != ge->prev->iy3) {
+                               vs[g->nvs].value = ge->ix3;
+                               if (ge->iy3 > ge->prev->iy3) {
+                                       vs[g->nvs].flags = ST_FLAT | ST_UP;
+                                       vs[g->nvs].from = ge->prev->iy3;
+                                       vs[g->nvs].to = ge->iy3;
+                               } else {
+                                       vs[g->nvs].flags = ST_FLAT;
+                                       vs[g->nvs].from = ge->iy3;
+                                       vs[g->nvs].to = ge->prev->iy3;
+                               }
+                               vs[g->nvs].origin = ge->iy3;
+                               vs[g->nvs].ge = ge->frwd;
+
+                               pge = ge->bkwd;
+
+                               /* add beginning as hstem */
+                               hs[g->nhs].value = pge->iy3;
+                               hs[g->nhs].origin
+                                       = hs[g->nhs].from
+                                       = hs[g->nhs].to = pge->ix3;
+                               hs[g->nhs].ge = ge;
+
+                               if(pge->type==GE_CURVE)
+                                       ovalue=pge->ix2;
+                               else
+                                       ovalue=pge->prev->ix3;
+
+                               if (pge->ix3 < ovalue)
+                                       hs[g->nhs].flags = ST_UP | ST_END;
+                               else if (pge->ix3 > ovalue)
+                                       hs[g->nhs].flags = ST_END;
+                               else
+                                       hs[g->nhs].flags = 0;
+
+                               if( hs[g->nhs].flags != 0 )
+                                       g->nhs++;
+
+                               /* add end as hstem */
+                               hs[g->nhs].value = ge->iy3;
+                               hs[g->nhs].origin
+                                       = hs[g->nhs].from
+                                       = hs[g->nhs].to = ge->ix3;
+                               hs[g->nhs].ge = ge->frwd;
+
+                               if(nge->type==GE_CURVE)
+                                       ovalue=nge->ix1;
+                               else
+                                       ovalue=nge->ix3;
+
+                               if (ovalue < ge->ix3)
+                                       hs[g->nhs].flags = ST_UP | ST_END;
+                               else if (ovalue > ge->ix3)
+                                       hs[g->nhs].flags = ST_END;
+                               else
+                                       hs[g->nhs].flags = 0;
+
+                               if( hs[g->nhs].flags != 0 )
+                                       g->nhs++;
+
+                               g->nvs++;
+                       }
+                       /*
+                        * check the end of line for a not smooth local
+                        * extremum
+                        */
+                       nge = ge->frwd;
+
+                       if (nge == 0)
+                               continue;
+                       else if (nge->type == GE_LINE) {
+                               nx = nge->ix3;
+                               ny = nge->iy3;
+                       } else if (nge->type == GE_CURVE) {
+                               nx = nge->ix1;
+                               ny = nge->iy1;
+                       } else
+                               continue;
+
+                       /* check for vertical extremums */
+                       if (ge->iy3 > ge->prev->iy3 && ge->iy3 > ny
+                       || ge->iy3 < ge->prev->iy3 && ge->iy3 < ny) {
+                               hs[g->nhs].value = ge->iy3;
+                               hs[g->nhs].from
+                                       = hs[g->nhs].to
+                                       = hs[g->nhs].origin = ge->ix3;
+                               hs[g->nhs].ge = ge->frwd;
+
+                               if (ge->ix3 < ge->prev->ix3
+                                   || nx < ge->ix3)
+                                       hs[g->nhs].flags = ST_UP;
+                               else
+                                       hs[g->nhs].flags = 0;
+
+                               if (ge->ix3 != ge->prev->ix3 || nx != ge->ix3)
+                                       g->nhs++;
+                       }
+                       /*
+                        * the same point may be both horizontal and vertical
+                        * extremum
+                        */
+                       /* check for horizontal extremums */
+                       if (ge->ix3 > ge->prev->ix3 && ge->ix3 > nx
+                       || ge->ix3 < ge->prev->ix3 && ge->ix3 < nx) {
+                               vs[g->nvs].value = ge->ix3;
+                               vs[g->nvs].from
+                                       = vs[g->nvs].to
+                                       = vs[g->nvs].origin = ge->iy3;
+                               vs[g->nvs].ge = ge->frwd;
+
+                               if (ge->iy3 > ge->prev->iy3
+                                   || ny > ge->iy3)
+                                       vs[g->nvs].flags = ST_UP;
+                               else
+                                       vs[g->nvs].flags = 0;
+
+                               if (ge->iy3 != ge->prev->iy3 || ny != ge->iy3)
+                                       g->nvs++;
+                       }
+               }
+       }
+
+       g->nhs=addbluestems(hs, g->nhs);
+       sortstems(hs, g->nhs);
+       sortstems(vs, g->nvs);
+
+       if (ISDBG(STEMS))
+               debugstems(g->name, hs, g->nhs, vs, g->nvs);
+
+       /* find the stems interacting with the Blue Zones */
+       markbluestems(hs, g->nhs);
+
+       if(subhints) {
+               if (ISDBG(SUBSTEMS))
+                       fprintf(pfa_file, "%% %s: joining subst horizontal stems\n", g->name);
+               joinsubstems(hs, hs_pairs, g->nhs, 1);
+               uniformstems(hs, hs_pairs, g->nhs);
+
+               if (ISDBG(SUBSTEMS))
+                       fprintf(pfa_file, "%% %s: joining subst vertical stems\n", g->name);
+               joinsubstems(vs, vs_pairs, g->nvs, 0);
+
+               groupsubstems(g, hs, hs_pairs, g->nhs, vs, vs_pairs, g->nvs);
+       }
+
+       if (ISDBG(MAINSTEMS))
+               fprintf(pfa_file, "%% %s: joining main horizontal stems\n", g->name);
+       g->nhs = joinmainstems(hs, g->nhs, 1);
+       if (ISDBG(MAINSTEMS))
+               fprintf(pfa_file, "%% %s: joining main vertical stems\n", g->name);
+       g->nvs = joinmainstems(vs, g->nvs, 0);
+
+       if (ISDBG(MAINSTEMS))
+               debugstems(g->name, hs, g->nhs, vs, g->nvs);
+
+       if(g->nhs > 0) {
+               if ((sp = malloc(sizeof(STEM) * g->nhs)) == 0) {
+                       fprintf(stderr, "**** not enough memory for hints ****\n");
+                       exit(255);
+               }
+               g->hstems = sp;
+               memcpy(sp, hs, sizeof(STEM) * g->nhs);
+       } else
+               g->hstems = 0;
+
+       if(g->nvs > 0) {
+               if ((sp = malloc(sizeof(STEM) * g->nvs)) == 0) {
+                       fprintf(stderr, "**** not enough memory for hints ****\n");
+                       exit(255);
+               }
+               g->vstems = sp;
+               memcpy(sp, vs, sizeof(STEM) * g->nvs);
+       } else
+               g->vstems = 0;
+
+       /* now check that the stems won't overflow the interpreter's stem stack:
+        * some interpreters (like X11) push the stems on each change into
+        * stack and pop them only after the whole glyphs is completed.
+        */
+
+       totals = (g->nhs+g->nvs) / 2; /* we count whole stems, not halves */
+       lastgrp = -1;
+
+       for (ge = g->entries; ge != 0; ge = ge->next) {
+               grp=ge->stemid;
+               if(grp >= 0 && grp != lastgrp)  {
+                       if(grp==0)
+                               totals += g->nsbs[0];
+                       else
+                               totals += g->nsbs[grp] - g->nsbs[grp-1];
+
+                       lastgrp = grp;
+               }
+       }
+
+       /* be on the safe side, check for >= , not > */
+       if(totals >= max_stemdepth) {  /* oops, too deep */
+               WARNING_2 {
+                       fprintf(stderr, "Warning: glyph %s needs hint stack depth %d\n", g->name, totals);
+                       fprintf(stderr, "  (limit %d): removed the substituted hints from it\n", max_stemdepth);
+               }
+               if(g->nsg > 0) {
+                       for (ge = g->entries; ge != 0; ge = ge->next)
+                               ge->stemid = -1;
+                       free(g->sbstems); g->sbstems = 0;
+                       free(g->nsbs); g->nsbs = 0;
+                       g->nsg = 0;
+               }
+       }
+
+       /* now check if there are too many main stems */
+       totals = (g->nhs+g->nvs) / 2; /* we count whole stems, not halves */
+       if(totals >= max_stemdepth) { 
+               /* even worse, too much of non-substituted stems */
+               WARNING_2 {
+                       fprintf(stderr, "Warning: glyph %s has %d main hints\n", g->name, totals);
+                       fprintf(stderr, "  (limit %d): removed the hints from it\n", max_stemdepth);
+               }
+               if(g->vstems) {
+                       free(g->vstems); g->vstems = 0; g->nvs = 0;
+               }
+               if(g->hstems) {
+                       free(g->hstems); g->hstems = 0; g->nhs = 0;
+               }
+       }
+}
+
+/* convert weird curves that are close to lines into lines.
+*/
+
+void
+fstraighten(
+          GLYPH * g
+)
+{
+       GENTRY         *ge, *pge, *nge, *ige;
+       double          df;
+       int             dir;
+       double          iln, oln;
+       int             svdir, i, o;
+
+       for (ige = g->entries; ige != 0; ige = ige->next) {
+               if (ige->type != GE_CURVE)
+                       continue;
+
+               ge = ige;
+               pge = ge->bkwd;
+               nge = ge->frwd;
+
+               df = 0.;
+
+               /* look for vertical then horizontal */
+               for(i=0; i<2; i++) {
+                       o = !i; /* other axis */
+
+                       iln = fabs(ge->fpoints[i][2] - pge->fpoints[i][2]);
+                       oln = fabs(ge->fpoints[o][2] - pge->fpoints[o][2]);
+                       /*
+                        * if current curve is almost a vertical line, and it
+                        * doesn't begin or end horizontally (and the prev/next
+                        * line doesn't join smoothly ?)
+                        */
+                       if( oln < 1.
+                       || ge->fpoints[o][2] == ge->fpoints[o][1] 
+                       || ge->fpoints[o][0] == pge->fpoints[o][2]
+                       || iln > 2.
+                       || iln > 1.  && iln/oln > 0.1 )
+                               continue;
+
+
+                       if(ISDBG(STRAIGHTEN)) 
+                               fprintf(stderr,"** straighten almost %s\n", (i? "horizontal":"vertical"));
+
+                       df = ge->fpoints[i][2] - pge->fpoints[i][2];
+                       dir = fsign(ge->fpoints[o][2] - pge->fpoints[o][2]);
+                       ge->type = GE_LINE;
+
+                       /*
+                        * suck in all the sequence of such almost lines
+                        * going in the same direction but not deviating
+                        * too far from vertical
+                        */
+                       iln = fabs(nge->fpoints[i][2] - ge->fpoints[i][2]);
+                       oln = nge->fpoints[o][2] - ge->fpoints[o][2];
+
+                       while (fabs(df) <= 5 && nge->type == GE_CURVE
+                       && dir == fsign(oln) /* that also gives oln != 0 */
+                       && iln <= 2.
+                       && ( iln <= 1.  || iln/fabs(oln) <= 0.1 ) ) {
+                               ge->fx3 = nge->fx3;
+                               ge->fy3 = nge->fy3;
+
+                               if(ISDBG(STRAIGHTEN))
+                                       fprintf(stderr,"** straighten collapsing %s\n", (i? "horizontal":"vertical"));
+                               freethisge(nge);
+                               fixendpath(ge);
+                               pge = ge->bkwd;
+                               nge = ge->frwd;
+
+                               df = ge->fpoints[i][2] - pge->fpoints[i][2];
+
+                               iln = fabs(nge->fpoints[i][2] - ge->fpoints[i][2]);
+                               oln = nge->fpoints[o][2] - ge->fpoints[o][2];
+                       }
+
+                       /* now check what do we have as previous/next line */
+
+                       if(ge != pge) { 
+                               if( pge->type == GE_LINE && pge->fpoints[i][2] == pge->prev->fpoints[i][2]
+                               && fabs(pge->fpoints[o][2] != pge->prev->fpoints[o][2]) ) {
+                                       if(ISDBG(STRAIGHTEN)) fprintf(stderr,"** straighten join with previous 0x%x 0x%x\n", pge, ge);
+                                       /* join the previous line with current */
+                                       pge->fx3 = ge->fx3;
+                                       pge->fy3 = ge->fy3;
+
+                                       ige = freethisge(ge)->prev; /* keep the iterator valid */
+                                       ge = pge;
+                                       fixendpath(ge);
+                                       pge = ge->bkwd;
+                               }
+                       }
+
+                       if(ge != nge) { 
+                               if (nge->type == GE_LINE && nge->fpoints[i][2] == ge->fpoints[i][2]
+                               && fabs(nge->fpoints[o][2] != ge->fpoints[o][2]) ) {
+                                       if(ISDBG(STRAIGHTEN)) fprintf(stderr,"** straighten join with next 0x%x 0x%x\n", ge, nge);
+                                       /* join the next line with current */
+                                       ge->fx3 = nge->fx3;
+                                       ge->fy3 = nge->fy3;
+
+                                       freethisge(nge);
+                                       fixendpath(ge);
+                                       pge = ge->bkwd;
+                                       nge = ge->frwd;
+
+                               }
+                       }
+
+                       if(ge != pge) { 
+                               /* try to align the lines if neccessary */
+                               if(df != 0.)
+                                       fclosegap(ge, ge, i, df, NULL);
+                       } else {
+                               /* contour consists of only one line, get rid of it */
+                               ige = freethisge(ge)->prev; /* keep the iterator valid */
+                       }
+
+                       break; /* don't bother looking at the other axis */
+               }
+       }
+}
+
+/* solve a square equation,
+ * returns the number of solutions found, the solutions
+ * are stored in res which should point to array of two doubles.
+ * min and max limit the area for solutions
+ */
+
+static int
+fsqequation(
+       double a,
+       double b,
+       double c,
+       double *res,
+       double min,
+       double max
+)
+{
+       double D;
+       int n;
+
+       if(ISDBG(SQEQ)) fprintf(stderr, "sqeq(%g,%g,%g) [%g;%g]\n", a, b, c, min, max);
+
+       if(fabs(a) < 0.000001) { /* if a linear equation */
+               n=0;
+               if(fabs(b) < 0.000001) /* not an equation at all */
+                       return 0;
+               res[0] = -c/b;
+               if(ISDBG(SQEQ)) fprintf(stderr, "sqeq: linear t=%g\n", res[0]);
+               if(res[0] >= min && res[0] <= max)
+                       n++;
+               return n;
+       }
+
+       D = b*b - 4.0*a*c;
+       if(ISDBG(SQEQ)) fprintf(stderr, "sqeq: D=%g\n", D);
+       if(D<0)
+               return 0;
+
+       D = sqrt(D);
+
+       n=0;
+       res[0] = (-b+D) / (2*a);
+       if(ISDBG(SQEQ)) fprintf(stderr, "sqeq: t1=%g\n", res[0]);
+       if(res[0] >= min && res[0] <= max)
+               n++;
+
+       res[n] = (-b-D) / (2*a);
+       if(ISDBG(SQEQ)) fprintf(stderr, "sqeq: t2=%g\n", res[n]);
+       if(res[n] >= min && res[n] <= max)
+               n++;
+
+       /* return 2nd solution only if it's different enough */
+       if(n==2 && fabs(res[0]-res[1])<0.000001)
+               n=1;
+
+       return n;
+}
+
+/* check that the curves don't cross quadrant boundary */
+/* (float) */
+
+/*
+  Here we make sure that the curve does not continue past
+  horizontal or vertical extremums. The horizontal points are
+  explained, vertical points are by analogy.
+
+  The horizontal points are where the derivative
+  dy/dx is equal to 0. But the Bezier curves are defined by
+  parametric formulas
+   x=fx(t)
+   y=fy(t)
+  so finding this derivative is complicated.
+  Also even if we find some point (x,y) splitting at this point
+  is far not obvious. Fortunately we can use dy/dt = 0 instead,
+  this gets to a rather simple square equation and splitting
+  at a known value of t is simple.
+
+  The formulas are:
+
+  y = A*(1-t)^3 + 3*B*(1-t)^2*t + 3*C*(1-t)*t^2 + D*t^3
+  y = (-A+3*B-3*C+D)*t^3 + (3*A-6*B+3*C)*t^2 + (-3*A+3*B)*t + A
+  dy/dt = 3*(-A+3*B-3*C+D)*t^2 + 2*(3*A-6*B+3*C)*t + (-3*A+3*B)
+ */
+
+void
+ffixquadrants(
+       GLYPH *g
+)
+{
+       GENTRY         *ge, *nge;
+       int     i, j, np, oldnp;
+       double  sp[5]; /* split points, last one empty */
+       char dir[5]; /* for debugging, direction by which split happened */
+       double a, b, *pts; /* points of a curve */
+
+       for (ge = g->entries; ge != 0; ge = ge->next) {
+               if (ge->type != GE_CURVE)
+                       continue;
+               
+       doagain:
+               np = 0; /* no split points yet */
+               if(ISDBG(QUAD)) {
+                       fprintf(stderr, "%s: trying 0x%x (%g %g) (%g %g) (%g %g) (%g %g)\n  ", g->name,
+                               ge,  ge->prev->fx3, ge->prev->fy3, ge->fx1, ge->fy1, ge->fx2, ge->fy2,
+                               ge->fx3, ge->fy3);
+               }
+               for(i=0; i<2; i++) { /* first for x then for y */
+                       /* find the cooridnates of control points */
+                       a = ge->prev->fpoints[i][2];
+                       pts = &ge->fpoints[i][0];
+
+                       oldnp = np;
+                       np += fsqequation(
+                               3.0*(-a + 3.0*pts[0] - 3.0*pts[1] + pts[2]),
+                               6.0*(a - 2.0*pts[0] + pts[1]),
+                               3.0*(-a + pts[0]),
+                               &sp[np],
+                               0.0, 1.0); /* XXX range is [0;1] */
+
+                       if(np == oldnp)
+                               continue;
+
+                       if(ISDBG(QUAD))
+                               fprintf(stderr, "%s: 0x%x: %d pts(%c): ", 
+                                       g->name, ge, np-oldnp, i? 'y':'x');
+
+                       /* remove points that are too close to the ends 
+                        * because hor/vert ends are permitted, also
+                        * if the split point is VERY close to the ends
+                        * but not exactly then just flatten it and check again.
+                        */
+                       for(j = oldnp; j<np; j++) {
+                               dir[j] = i;
+                               if(ISDBG(QUAD))
+                                       fprintf(stderr, "%g ", sp[j]);
+                               if(sp[j] < 0.03) { /* front end of curve */
+                                       if(ge->fpoints[i][0] != ge->prev->fpoints[i][2]) {
+                                               ge->fpoints[i][0] = ge->prev->fpoints[i][2];
+                                               if(ISDBG(QUAD)) fprintf(stderr, "flattened at front\n");
+                                               goto doagain;
+                                       }
+                                       if( ge->fpoints[i][1] != ge->fpoints[i][0]
+                                       && fsign(ge->fpoints[i][2] - ge->fpoints[i][1])
+                                                       != fsign(ge->fpoints[i][1] - ge->fpoints[i][0]) ) {
+                                               ge->fpoints[i][1] = ge->fpoints[i][0];
+                                               if(ISDBG(QUAD)) fprintf(stderr, "flattened zigzag at front\n");
+                                               goto doagain;
+                                       }
+                                       sp[j] = sp[j+1]; np--; j--;
+                                       if(ISDBG(QUAD)) fprintf(stderr, "(front flat)  ");
+                               } else if(sp[j] > 0.97) { /* rear end of curve */
+                                       if(ge->fpoints[i][1] != ge->fpoints[i][2]) {
+                                               ge->fpoints[i][1] = ge->fpoints[i][2];
+                                               if(ISDBG(QUAD)) fprintf(stderr, "flattened at rear\n");
+                                               goto doagain;
+                                       }
+                                       if( ge->fpoints[i][0] != ge->fpoints[i][1]
+                                       && fsign(ge->prev->fpoints[i][2] - ge->fpoints[i][0])
+                                                       != fsign(ge->fpoints[i][0] - ge->fpoints[i][1]) ) {
+                                               ge->fpoints[i][0] = ge->fpoints[i][1];
+                                               if(ISDBG(QUAD)) fprintf(stderr, "flattened zigzag at rear\n");
+                                               goto doagain;
+                                       }
+                                       sp[j] = sp[j+1]; np--; j--;
+                                       if(ISDBG(QUAD)) fprintf(stderr, "(rear flat)  ");
+                               } 
+                       }
+                       if(ISDBG(QUAD)) fprintf(stderr, "\n");
+               }
+
+               if(np==0) /* no split points, leave it alone */
+                       continue;
+
+               if(ISDBG(QUAD)) {
+                       fprintf(stderr, "%s: splitting 0x%x (%g %g) (%g %g) (%g %g) (%g %g) at %d points\n  ", g->name,
+                               ge,  ge->prev->fx3, ge->prev->fy3, ge->fx1, ge->fy1, ge->fx2, ge->fy2,
+                               ge->fx3, ge->fy3, np);
+                       for(i=0; i<np; i++)
+                               fprintf(stderr, "%g(%c) ", sp[i], dir[i] ? 'y':'x');
+                       fprintf(stderr, "\n");
+               }
+
+               /* sort the points ascending */
+               for(i=0; i<np; i++)
+                       for(j=i+1; j<np; j++)
+                               if(sp[i] > sp[j]) {
+                                       a = sp[i]; sp[i] = sp[j]; sp[j] = a;
+                               }
+
+               /* now finally do the split on each point */
+               for(j=0; j<np; j++) {
+                       double k1, k2, c;
+
+                       k1 = sp[j];
+                       k2 = 1 - k1;
+
+                       if(ISDBG(QUAD)) fprintf(stderr, "   0x%x %g/%g\n", ge, k1, k2);
+
+                       nge = newgentry(GEF_FLOAT);
+                       (*nge) = (*ge);
+
+#define SPLIT(pt1, pt2)        ( (pt1) + k1*((pt2)-(pt1)) ) /* order is important! */
+                       for(i=0; i<2; i++) { /* for x and y */
+                               a = ge->fpoints[i][0]; /* get the middle points */
+                               b = ge->fpoints[i][1];
+
+                               /* calculate new internal points */
+                               c = SPLIT(a, b);
+
+                               ge->fpoints[i][0] = SPLIT(ge->prev->fpoints[i][2], a);
+                               ge->fpoints[i][1] = SPLIT(ge->fpoints[i][0], c);
+
+                               nge->fpoints[i][1] = SPLIT(b, nge->fpoints[i][2]);
+                               nge->fpoints[i][0] = SPLIT(c, nge->fpoints[i][1]);
+
+                               ge->fpoints[i][2] = SPLIT(ge->fpoints[i][1],
+                                       + nge->fpoints[i][0]);
+                       }
+#undef SPLIT
+
+                       addgeafter(ge, nge);
+
+                       /* go to the next part, adjust remaining points */
+                       ge = nge;
+                       for(i=j+1; i<np; i++)
+                               sp[i] = (sp[i]-k1) / k2;
+               }
+       }
+
+}
+
+/* check if a curve is a zigzag */
+
+static int
+iiszigzag(
+       GENTRY *ge
+) 
+{
+       double          k, k1, k2;
+       double          a, b;
+
+       if (ge->type != GE_CURVE)
+               return 0;
+
+       a = ge->iy2 - ge->iy1;
+       b = ge->ix2 - ge->ix1;
+       k = fabs(a == 0 ? (b == 0 ? 1. : FBIGVAL) : (double) b / (double) a);
+       a = ge->iy1 - ge->prev->iy3;
+       b = ge->ix1 - ge->prev->ix3;
+       k1 = fabs(a == 0 ? (b == 0 ? 1. : FBIGVAL) : (double) b / (double) a);
+       a = ge->iy3 - ge->iy2;
+       b = ge->ix3 - ge->ix2;
+       k2 = fabs(a == 0 ? (b == 0 ? 1. : FBIGVAL) : (double) b / (double) a);
+
+       /* if the curve is not a zigzag */
+       if (k1 >= k && k2 <= k || k1 <= k && k2 >= k)
+               return 0;
+       else
+               return 1;
+}
+
+/* check if a curve is a zigzag - floating */
+
+static int
+fiszigzag(
+       GENTRY *ge
+) 
+{
+       double          k, k1, k2;
+       double          a, b;
+
+       if (ge->type != GE_CURVE)
+               return 0;
+
+       a = fabs(ge->fy2 - ge->fy1);
+       b = fabs(ge->fx2 - ge->fx1);
+       k = a < FEPS ? (b <FEPS ? 1. : FBIGVAL) : b / a;
+       a = fabs(ge->fy1 - ge->prev->fy3);
+       b = fabs(ge->fx1 - ge->prev->fx3);
+       k1 = a < FEPS ? (b < FEPS ? 1. : FBIGVAL) : b / a;
+       a = fabs(ge->fy3 - ge->fy2);
+       b = fabs(ge->fx3 - ge->fx2);
+       k2 = a < FEPS ? (b <FEPS ? 1. : FBIGVAL) : b / a;
+
+       /* if the curve is not a zigzag */
+       if (k1 >= k && k2 <= k || k1 <= k && k2 >= k)
+               return 0;
+       else
+               return 1;
+}
+
+/* split the zigzag-like curves into two parts */
+
+void
+fsplitzigzags(
+            GLYPH * g
+)
+{
+       GENTRY         *ge, *nge;
+       double          a, b, c, d;
+
+       assertisfloat(g, "splitting zigzags");
+       for (ge = g->entries; ge != 0; ge = ge->next) {
+               if (ge->type != GE_CURVE)
+                       continue;
+
+               /* if the curve is not a zigzag */
+               if ( !fiszigzag(ge) ) {
+                       continue;
+               }
+
+               /* split the curve by t=0.5 */
+               nge = newgentry(GEF_FLOAT);
+               (*nge) = (*ge);
+               nge->type = GE_CURVE;
+
+               a = ge->prev->fx3;
+               b = ge->fx1;
+               c = ge->fx2;
+               d = ge->fx3;
+               nge->fx3 = d;
+               nge->fx2 = (c + d) / 2.;
+               nge->fx1 = (b + 2. * c + d) / 4.;
+               ge->fx3 = (a + b * 3. + c * 3. + d) / 8.;
+               ge->fx2 = (a + 2. * b + c) / 4.;
+               ge->fx1 = (a + b) / 2.;
+
+               a = ge->prev->fy3;
+               b = ge->fy1;
+               c = ge->fy2;
+               d = ge->fy3;
+               nge->fy3 = d;
+               nge->fy2 = (c + d) / 2.;
+               nge->fy1 = (b + 2. * c + d) / 4.;
+               ge->fy3 = (a + b * 3. + c * 3. + d) / 8.;
+               ge->fy2 = (a + 2. * b + c) / 4.;
+               ge->fy1 = (a + b) / 2.;
+
+               addgeafter(ge, nge);
+       }
+}
+
+/* free this GENTRY, returns what was ge->next
+ * (ge must be of type GE_LINE or GE_CURVE)
+ * works on both float and int entries
+ */
+
+static GENTRY *
+freethisge(
+       GENTRY *ge
+)
+{
+       GENTRY *xge;
+
+       if (ge->bkwd != ge->prev) {
+               /* at beginning of the contour */
+
+               xge = ge->bkwd;
+               if(xge == ge) { /* was the only line in contour */
+                       /* remove the contour completely */
+                       /* prev is GE_MOVE, next is GE_PATH, remove them all */
+
+                       /* may be the first contour, then ->bkwd points to ge->entries */
+                       if(ge->prev->prev == 0)
+                               *(GENTRY **)(ge->prev->bkwd) = ge->next->next;
+                       else
+                               ge->prev->prev->next = ge->next->next;
+
+                       if(ge->next->next) {
+                               ge->next->next->prev = ge->prev->prev;
+                               ge->next->next->bkwd = ge->prev->bkwd;
+                       }
+
+                       xge = ge->next->next;
+                       free(ge->prev); free(ge->next); free(ge);
+                       return xge;
+               }
+
+               /* move the start point of the contour */
+               if(ge->flags & GEF_FLOAT) {
+                       ge->prev->fx3 = xge->fx3;
+                       ge->prev->fy3 = xge->fy3;
+               } else {
+                       ge->prev->ix3 = xge->ix3;
+                       ge->prev->iy3 = xge->iy3;
+               }
+       } else if(ge->frwd != ge->next) {
+               /* at end of the contour */
+
+               xge = ge->frwd->prev;
+               /* move the start point of the contour */
+               if(ge->flags & GEF_FLOAT) {
+                       xge->fx3 = ge->bkwd->fx3;
+                       xge->fy3 = ge->bkwd->fy3;
+               } else {
+                       xge->ix3 = ge->bkwd->ix3;
+                       xge->iy3 = ge->bkwd->iy3;
+               }
+       }
+
+       ge->prev->next = ge->next;
+       ge->next->prev = ge->prev;
+       ge->bkwd->frwd = ge->frwd;
+       ge->frwd->bkwd = ge->bkwd;
+
+       xge = ge->next;
+       free(ge);
+       return xge;
+}
+
+/* inserts a new gentry (LINE or CURVE) after another (MOVE
+ * or LINE or CURVE)
+ * corrects the first GE_MOVE if neccessary
+ */
+
+static void
+addgeafter(
+       GENTRY *oge, /* after this */
+       GENTRY *nge /* insert this */
+)
+{
+       if(oge->type == GE_MOVE) {
+               /* insert before next */
+               if(oge->next->type == GE_PATH) {
+                       /* first and only GENTRY in path */
+                       nge->frwd = nge->bkwd = nge;
+               } else {
+                       nge->frwd = oge->next;
+                       nge->bkwd = oge->next->bkwd;
+                       oge->next->bkwd->frwd = nge;
+                       oge->next->bkwd = nge;
+               }
+       } else {
+               nge->frwd = oge->frwd;
+               nge->bkwd = oge;
+               oge->frwd->bkwd = nge;
+               oge->frwd = nge;
+       }
+
+       nge->next = oge->next;
+       nge->prev = oge;
+       oge->next->prev = nge;
+       oge->next = nge;
+
+       if(nge->frwd->prev->type == GE_MOVE) {
+               /* fix up the GE_MOVE entry */
+               if(nge->flags & GEF_FLOAT) {
+                       nge->frwd->prev->fx3 = nge->fx3;
+                       nge->frwd->prev->fy3 = nge->fy3;
+               } else {
+                       nge->frwd->prev->ix3 = nge->ix3;
+                       nge->frwd->prev->iy3 = nge->iy3;
+               }
+       }
+}
+
+/*
+ * Check if this GENTRY happens to be at the end of path
+ * and fix the first MOVETO accordingly
+ * handles both int and float
+ */
+
+static void
+fixendpath(
+       GENTRY *ge
+)
+{
+       GENTRY *mge;
+
+       mge = ge->frwd->prev;
+       if(mge->type == GE_MOVE) {
+               if(ge->flags & GEF_FLOAT) {
+                       mge->fx3 = ge->fx3;
+                       mge->fy3 = ge->fy3;
+               } else {
+                       mge->ix3 = ge->ix3;
+                       mge->iy3 = ge->iy3;
+               }
+       }
+}
+
+/*
+ * This function adjusts the rest of path (the part from...to is NOT changed)
+ * to cover the specified gap by the specified axis (0 - X, 1 - Y).
+ * Gap is counted in direction (end_of_to - beginning_of_from).
+ * Returns by how much the gap was not closed (0.0 if it was fully closed).
+ * Ret contains by how much the first and last points of [from...to]
+ * were moved to bring them in consistence to the rest of the path.
+ * If ret==NULL then this info is not returned.
+ */
+
+static double
+fclosegap(
+       GENTRY *from,
+       GENTRY *to,
+       int axis,
+       double gap,
+       double *ret
+)
+{
+#define TIMESLARGER 10.        /* how many times larger must be a curve to not change too much */
+       double rm[2];
+       double oldpos[2];
+       double times, limit, df, dx;
+       int j, k;
+       GENTRY *xge, *pge, *nge, *bge[2];
+
+       /* remember the old points to calculate ret */
+       oldpos[0] = from->prev->fpoints[axis][2];
+       oldpos[1] = to->fpoints[axis][2];
+
+       rm[0] = rm[1] = gap / 2. ;
+
+       bge[0] = from; /* this is convenient for iterations */
+       bge[1] = to;
+
+       /* first try to modify large curves but if have none then settle for small */
+       for(times = (TIMESLARGER-1); times > 0.1; times /= 2. ) {
+
+               if(rm[0]+rm[1] == 0.)
+                       break;
+
+               /* iterate in both directions, backwards then forwards */
+               for(j = 0; j<2; j++) {
+
+                       if(rm[j] == 0.) /* if this direction is exhausted */
+                               continue;
+
+                       limit = fabs(rm[j]) * (1.+times);
+
+                       for(xge = bge[j]->cntr[j]; xge != bge[!j]; xge = xge->cntr[j]) {
+                               dx = xge->fpoints[axis][2] - xge->prev->fpoints[axis][2];
+                               df = fabs(dx) - limit;
+                               if( df <= FEPS ) /* curve is too small to change */
+                                       continue;
+
+                               if( df >= fabs(rm[j]) )
+                                       df = rm[j];
+                               else 
+                                       df *= fsign(rm[j]); /* we may cover this part of rm */
+
+                               rm[j] -= df;
+                               limit = fabs(rm[j]) * (1.+times);
+
+                               if(xge->type == GE_CURVE) { /* correct internal points */
+                                       double scale = ((dx+df) / dx) - 1.;
+                                       double base;
+
+                                       if(j)
+                                               base = xge->fpoints[axis][2];
+                                       else
+                                               base = xge->prev->fpoints[axis][2];
+
+                                       for(k = 0; k<2; k++)
+                                               xge->fpoints[axis][k] += scale * 
+                                                       (xge->fpoints[axis][k] - base);
+                               }
+
+                               /* move all the intermediate lines */
+                               if(j) {
+                                       df = -df; /* absolute direction */
+                                       pge = bge[1]->bkwd;
+                                       nge = xge->bkwd;
+                               } else {
+                                       xge->fpoints[axis][2] += df;
+                                       pge = bge[0];
+                                       nge = xge->frwd;
+                               }
+                               while(nge != pge) {
+                                       if(nge->type == GE_CURVE) {
+                                               nge->fpoints[axis][0] +=df;
+                                               nge->fpoints[axis][1] +=df;
+                                       }
+                                       nge->fpoints[axis][2] += df;
+                                       if(nge->next != nge->frwd) { /* last entry of contour */
+                                               nge->frwd->prev->fpoints[axis][2] += df;
+                                       }
+                                       nge = nge->cntr[!j];
+                               }
+
+                               if(rm[j] == 0.)
+                                       break;
+                       }
+               }
+       }
+
+       /* find the difference */
+       oldpos[0] -= from->prev->fpoints[axis][2];
+       oldpos[1] -= to->fpoints[axis][2];
+
+       if(ret) {
+               ret[0] = oldpos[0] - from->prev->fpoints[axis][2];
+               ret[1] = oldpos[1] - to->fpoints[axis][2];
+       }
+
+#if 0
+       if( rm[0]+rm[1] != gap - oldpos[1] + oldpos[0]) {
+               fprintf(stderr, "** gap=%g rm[0]=%g rm[1]=%g o[0]=%g o[1]=%g rg=%g og=%g\n",
+                       gap, rm[0], rm[1], oldpos[0], oldpos[1], rm[0]+rm[1], 
+                       gap - oldpos[1] + oldpos[0]);
+       }
+#endif
+
+       return rm[0]+rm[1];
+#undef TIMESLARGER
+}
+
+/* remove the lines or curves smaller or equal to the size limit */
+
+static void
+fdelsmall(
+       GLYPH *g,
+       double minlen
+)
+{
+       GENTRY  *ge, *nge, *pge, *xge, *next;
+       int i, k;
+       double dx, dy, d2, d2m;
+       double minlen2;
+#define TIMESLARGER 10.        /* how much larger must be a curve to not change too much */
+
+       minlen2 = minlen*minlen;
+
+       for (ge = g->entries; ge != 0; ge = next) {
+               next = ge->next;
+
+               if (ge->type != GE_CURVE && ge->type != GE_LINE)
+                       continue;
+
+               d2m = 0;
+               for(i= (ge->type==GE_CURVE? 0: 2); i<3; i++) {
+                       dx = ge->fxn[i] - ge->prev->fx3;
+                       dy = ge->fyn[i] - ge->prev->fy3;
+                       d2 = dx*dx + dy*dy;
+                       if(d2m < d2)
+                               d2m = d2;
+               }
+
+               if( d2m > minlen2 ) { /* line is not too small */
+                       /* XXX add more normalization here */
+                       continue;
+               }
+
+               /* if the line is too small */
+
+               /* check forwards if we have a whole sequence of them */
+               nge = ge;
+               for(xge = ge->frwd; xge != ge; xge = xge->frwd) {
+                       d2m = 0;
+                       for(i= (xge->type==GE_CURVE? 0: 2); i<3; i++) {
+                               dx = xge->fxn[i] - xge->prev->fx3;
+                               dy = xge->fyn[i] - xge->prev->fy3;
+                               d2 = dx*dx + dy*dy;
+                               if(d2m < d2)
+                                       d2m = d2;
+                       }
+                       if( d2m > minlen2 ) /* line is not too small */
+                               break;
+                       nge = xge;
+                       if(next == nge) /* move the next step past this sequence */
+                               next = next->next;
+               }
+
+               /* check backwards if we have a whole sequence of them */
+               pge = ge;
+               for(xge = ge->bkwd; xge != ge; xge = xge->bkwd) {
+                       d2m = 0;
+                       for(i= (xge->type==GE_CURVE? 0: 2); i<3; i++) {
+                               dx = xge->fxn[i] - xge->prev->fx3;
+                               dy = xge->fyn[i] - xge->prev->fy3;
+                               d2 = dx*dx + dy*dy;
+                               if(d2m < d2)
+                                       d2m = d2;
+                       }
+                       if( d2m > minlen2 ) /* line is not too small */
+                               break;
+                       pge = xge;
+               }
+
+               /* now we have a sequence of small fragments in pge...nge (inclusive) */
+
+               if(ISDBG(FCONCISE))  {
+                       fprintf(stderr, "glyph %s has very small fragments(%x..%x..%x)\n", 
+                       g->name, pge, ge, nge);
+                       dumppaths(g, pge, nge);
+               }
+
+               /* reduce whole sequence to one part and remember the middle point */
+               if(pge != nge) {
+                       while(1) {
+                               xge = pge->frwd;
+                               if(xge == nge) {
+                                       pge->fx1 = pge->fx2 = pge->fx3;
+                                       pge->fx3 = nge->fx3;
+                                       pge->fy1 = pge->fy2 = pge->fy3;
+                                       pge->fy3 = nge->fy3;
+                                       pge->type = GE_CURVE;
+                                       freethisge(nge);
+                                       break;
+                               }
+                               if(xge == nge->bkwd) {
+                                       pge->fx1 = pge->fx2 = (pge->fx3+xge->fx3)/2.;
+                                       pge->fx3 = nge->fx3;
+                                       pge->fy1 = pge->fy2 = (pge->fy3+xge->fy3)/2.;
+                                       pge->fy3 = nge->fy3;
+                                       pge->type = GE_CURVE;
+                                       freethisge(nge);
+                                       freethisge(xge);
+                                       break;
+                               }
+                               freethisge(pge); pge = xge;
+                               xge = nge->bkwd; freethisge(nge); nge = xge;
+                       }
+               }
+               ge = pge;
+
+               /* check if the whole sequence is small */
+               dx = ge->fx3 - ge->prev->fx3;
+               dy = ge->fy3 - ge->prev->fy3;
+               d2 = dx*dx + dy*dy;
+
+               if( d2 > minlen2 ) { /* no, it is not */
+                       double b, d;
+
+                       WARNING_3 fprintf(stderr, "glyph %s had a sequence of fragments < %g points each, reduced to one curve\n",
+                               g->name, minlen);
+
+                       /* check that we did not create a monstrosity spanning quadrants */
+                       if(fsign(ge->fx1 - ge->prev->fx1) * fsign(ge->fx3 - ge->fx1) < 0
+                       || fsign(ge->fy1 - ge->prev->fy1) * fsign(ge->fy3 - ge->fy1) < 0 ) { 
+                               /* yes, we did; are both parts of this thing big enough ? */
+                               dx = ge->fx1 - ge->prev->fx3;
+                               dy = ge->fy1 - ge->prev->fy3;
+                               d2 = dx*dx + dy*dy;
+
+                               dx = ge->fx3 - ge->fx1;
+                               dy = ge->fy3 - ge->fy1;
+                               d2m = dx*dx + dy*dy;
+
+                               if(d2 > minlen2 && d2m > minlen2) { /* make two straights */
+                                       nge = newgentry(GEF_FLOAT);
+                                       *nge = *ge;
+                                       
+                                       for(i=0; i<2; i++) {
+                                               ge->fpoints[i][2] = ge->fpoints[i][0];
+                                               b = nge->fpoints[i][0];
+                                               d = nge->fpoints[i][2] - b;
+                                               nge->fpoints[i][0] = b + 0.1*d;
+                                               nge->fpoints[i][1] = b + 0.9*d;
+                                       }
+                               }
+                               for(i=0; i<2; i++) { /* make one straight or first of two straights */
+                                       b = ge->prev->fpoints[i][2];
+                                       d = ge->fpoints[i][2] - b;
+                                       ge->fpoints[i][0] = b + 0.1*d;
+                                       ge->fpoints[i][1] = b + 0.9*d;
+                               }
+                       }
+                       continue; 
+               }
+
+               if(ge->frwd == ge) { /* points to itself, just remove the path completely */
+                       WARNING_3 fprintf(stderr, "glyph %s had a path made of fragments < %g points each, removed\n",
+                               g->name, minlen);
+
+                       next = freethisge(ge);
+                       continue;
+               } 
+
+               /* now close the gap by x and y */
+               for(i=0; i<2; i++) {
+                       double gap;
+
+                       gap = ge->fpoints[i][2] - ge->prev->fpoints[i][2];
+                       if( fclosegap(ge, ge, i, gap, NULL) != 0.0 ) {
+                               double scale, base;
+
+                               /* not good, as the last resort just scale the next line */
+                               gap = ge->fpoints[i][2] - ge->prev->fpoints[i][2];
+
+                               if(ISDBG(FCONCISE)) 
+                                       fprintf(stderr, "    last resort on %c: closing next by %g\n",
+                                       (i==0 ? 'x' : 'y'), gap);
+
+                               nge = ge->frwd;
+                               base = nge->fpoints[i][2];
+                               dx = ge->fpoints[i][2] - base;
+                               if(fabs(dx) < FEPS)
+                                       continue;
+
+                               scale = ((dx-gap) / dx);
+
+                               if(nge->type == GE_CURVE)
+                                       for(k = 0; k<2; k++)
+                                               nge->fpoints[i][k] = base + 
+                                                       scale * (nge->fpoints[i][k] - base);
+
+                               ge->fpoints[i][2] -= gap;
+                       }
+               }
+
+               /* OK, the gap is closed - remove this useless GENTRY */
+               freethisge(ge);
+       }
+#undef TIMESLARGER
+}
+
+/* normalize curves to the form where their ends
+ * can be safely used as derivatives
+ */
+
+static void
+fnormalizec(
+            GLYPH * g
+)
+{
+       GENTRY *ge;
+       int midsame, frontsame, rearsame, i;
+       double d, b;
+
+       assertisfloat(g, "normalizing curves");
+
+       for (ge = g->entries; ge != 0; ge = ge->next) {
+               if (ge->type != GE_CURVE)
+                       continue;
+
+               midsame = (fabs(ge->fx1-ge->fx2)<FEPS && fabs(ge->fy1-ge->fy2)<FEPS);
+               frontsame = (fabs(ge->fx1-ge->prev->fx3)<FEPS && fabs(ge->fy1-ge->prev->fy3)<FEPS);
+               rearsame = (fabs(ge->fx3-ge->fx2)<FEPS && fabs(ge->fy3-ge->fy2)<FEPS);
+
+               if(midsame && (frontsame || rearsame) ) {
+                       /* essentially a line */
+                       for(i=0; i<2; i++) {
+                               b = ge->prev->fpoints[i][2];
+                               d = ge->fpoints[i][2] - b;
+                               ge->fpoints[i][0] = b + 0.1*d;
+                               ge->fpoints[i][1] = b + 0.9*d;
+                       }
+               } else if(frontsame) {
+                       for(i=0; i<2; i++) {
+                               b = ge->prev->fpoints[i][2];
+                               d = ge->fpoints[i][1] - b;
+                               ge->fpoints[i][0] = b + 0.01*d;
+                       }
+               } else if(rearsame) {
+                       for(i=0; i<2; i++) {
+                               b = ge->fpoints[i][2];
+                               d = ge->fpoints[i][0] - b;
+                               ge->fpoints[i][1] = b + 0.01*d;
+                       }
+               } else
+                       continue;
+
+               if(ISDBG(FCONCISE)) fprintf(stderr, "glyph %g, normalized entry %x\n", g->name, ge);
+       }
+}
+
+/* find the point where two rays continuing vectors cross
+ * rays are defined as beginning of curve1 and end of curve 2
+ * returns 1 if they cross, 0 if they don't
+ * If they cross returns the maximal scales for both vectors.
+ * Expects that the curves are normalized.
+ */
+
+static int
+fcrossrays(
+       GENTRY *ge1,
+       GENTRY *ge2,
+       double *max1,
+       double *max2
+)
+{
+       struct ray {
+               double x1, y1, x2, y2;
+               int isvert;
+               double k, b; /* lines are represented as y = k*x + b */
+               double *maxp;
+       } ray [3];
+       double x, y;
+       int i;
+
+       ray[0].x1 = ge1->prev->fx3;
+       ray[0].y1 = ge1->prev->fy3;
+       ray[0].x2 = ge1->fx1;
+       ray[0].y2 = ge1->fy1;
+       ray[0].maxp = max1;
+
+       ray[1].x1 = ge2->fx3;
+       ray[1].y1 = ge2->fy3;
+       ray[1].x2 = ge2->fx2;
+       ray[1].y2 = ge2->fy2;
+       ray[1].maxp = max2;
+
+       for(i=0; i<2; i++) {
+               if(ray[i].x1 == ray[i].x2) 
+                       ray[i].isvert = 1;
+               else {
+                       ray[i].isvert = 0;
+                       ray[i].k = (ray[i].y2 - ray[i].y1) / (ray[i].x2 - ray[i].x1);
+                       ray[i].b = ray[i].y2 - ray[i].k * ray[i].x2;
+               }
+       }
+
+       if(ray[0].isvert && ray[1].isvert) {
+               if(ISDBG(FCONCISE)) fprintf(stderr, "crossrays: both vertical\n");
+               return 0; /* both vertical, don't cross */
+       }
+
+       if(ray[1].isvert) {
+               ray[2] = ray[0]; /* exchange them */
+               ray[0] = ray[1];
+               ray[1] = ray[2];
+       }
+
+       if(ray[0].isvert) {
+               x = ray[0].x1;
+       } else {
+               if( fabs(ray[0].k - ray[1].k) < FEPS) {
+                       if(ISDBG(FCONCISE)) fprintf(stderr, "crossrays: parallel lines, k = %g, %g\n",
+                               ray[0].k, ray[1].k);
+                       return 0; /* parallel lines */
+               }
+               x = (ray[1].b - ray[0].b) / (ray[0].k - ray[1].k) ;
+       }
+       y = ray[1].k * x + ray[1].b;
+
+       for(i=0; i<2; i++) {
+               if(ray[i].isvert)
+                       *ray[i].maxp = (y - ray[i].y1) / (ray[i].y2 - ray[i].y1);
+               else
+                       *ray[i].maxp = (x - ray[i].x1) / (ray[i].x2 - ray[i].x1);
+               /* check if wrong sides of rays cross */
+               if( *ray[i].maxp < 0 ) {
+                       if(ISDBG(FCONCISE)) fprintf(stderr, "crossrays: scale=%g @(%g,%g) (%g,%g)<-(%g,%g)\n",
+                               *ray[i].maxp, x, y, ray[i].x2, ray[i].y2, ray[i].x1, ray[i].y1);
+                       return 0;
+               }
+       }
+       return 1;
+}
+
+/* find the area covered by the curve
+ * (limited by the projections to the X axis)
+ */
+
+static double
+fcvarea(
+       GENTRY *ge
+)
+{
+       double Ly, My, Ny, Py, Qx, Rx, Sx;
+       double area;
+
+       /* y = Ly*t^3 + My*t^2 + Ny*t + Py */
+       Ly = -ge->prev->fy3 + 3*(ge->fy1 - ge->fy2) + ge->fy3;
+       My = 3*ge->prev->fy3 - 6*ge->fy1 + 3*ge->fy2;
+       Ny = 3*(-ge->prev->fy3 + ge->fy1);
+       Py = ge->prev->fy3;
+
+       /* dx/dt = Qx*t^2 + Rx*t + Sx */
+       Qx = 3*(-ge->prev->fx3 + 3*(ge->fx1 - ge->fx2) + ge->fx3);
+       Rx = 6*(ge->prev->fx3 - 2*ge->fx1 + ge->fx2);
+       Sx = 3*(-ge->prev->fx3 + ge->fx1);
+
+       /* area is integral[from 0 to 1]( y(t) * dx(t)/dt *dt) */
+       area = 1./6.*(Ly*Qx) + 1./5.*(Ly*Rx + My*Qx) 
+               + 1./4.*(Ly*Sx + My*Rx + Ny*Qx) + 1./3.*(My*Sx + Ny*Rx + Py*Qx)
+               + 1./2.*(Ny*Sx + Py*Rx) + Py*Sx;
+
+       return area;
+}
+
+/* find the value of point on the curve at the given parameter t,
+ * along the given axis (0 - X, 1 - Y).
+ */
+
+static double
+fcvval(
+       GENTRY *ge,
+       int axis,
+       double t
+)
+{
+       double t2, mt, mt2;
+
+       /* val = A*(1-t)^3 + 3*B*(1-t)^2*t + 3*C*(1-t)*t^2 + D*t^3 */
+       t2 = t*t;
+       mt = 1-t;
+       mt2 = mt*mt;
+       
+       return ge->prev->fpoints[axis][2]*mt2*mt 
+               + 3*(ge->fpoints[axis][0]*mt2*t + ge->fpoints[axis][1]*mt*t2)
+               + ge->fpoints[axis][2]*t*t2;
+}
+
+/* Check that the new curve has the point identified by the 
+ * parameter t reasonably close to the corresponding point
+ * in the old pair of curves which were joined in proportion k.
+ * If old2 is NULL then just compare nge and old1 at the point t.
+ * Returns 0 if OK, 1 if it's too far.
+ */
+
+static int
+fckjoinedcv(
+       GLYPH *g,
+       double t,
+       GENTRY *nge,
+       GENTRY *old1,
+       GENTRY *old2,
+       double k
+)
+{
+       GENTRY *oge;
+       double ot;
+       double off;
+       double lim;
+       int i;
+
+       if(old2 == 0) {
+               oge = old1;
+               ot = t;
+       } else if(t <= k && k!=0.) {
+               oge = old1;
+               ot = t/k;
+       } else {
+               oge = old2;
+               ot = (t-k) / (1.-k);
+       }
+
+       if(ISDBG(FCONCISE))
+               fprintf(stderr, "%s: t=%g ot=%g (%x) ", g->name, t, ot, oge);
+
+       for(i=0; i<2; i++) {
+               /* permitted tolerance is 5% */
+               lim = fabs(nge->fpoints[i][2] - nge->prev->fpoints[i][2])*0.05;
+
+               if(lim < 3.)
+                       lim = 3.; /* for small curves the tolerance is higher */
+               if(lim > 10.)
+                       lim = 10.; /* for big curves the tolerance is limited anyway */
+
+               off = fabs(fcvval(nge, i, t) - fcvval(oge, i, ot));
+
+               if(off > lim) {
+                       if(ISDBG(FCONCISE))
+                               fprintf(stderr, "out of range d%c=%.2f(%.2f)\n", 
+                                       (i==0 ? 'X' : 'Y'), off, lim);
+                       return 1;
+               }
+
+               if(ISDBG(FCONCISE))
+                       fprintf(stderr, "valid d%c=%.2f(%.2f)  ", (i==0 ? 'X' : 'Y'), off, lim);
+       }
+       if(ISDBG(FCONCISE))
+               fprintf(stderr, "\n");
+       return 0;
+}
+
+/* force conciseness: substitute 2 or more curves going in the
+** same quadrant with one curve
+** in floating point
+*/
+
+void
+fforceconcise(
+            GLYPH * g
+)
+{
+       GENTRY         *ge, *nge;
+       GENTRY          tge;
+       double          firstlen, lastlen, sumlen, scale;
+       double          dxw1, dyw1, dxw2, dyw2;
+       double          dxb1, dyb1, dxe1, dye1;
+       double          dxb2, dyb2, dxe2, dye2;
+       double          maxsc1, maxsc2;
+       int             i;
+
+       assertisfloat(g, "enforcing conciseness");
+
+       fdelsmall(g, 0.05);
+       assertpath(g->entries, __FILE__, __LINE__, g->name);
+       fnormalizec(g);
+
+
+       for (ge = g->entries; ge != 0; ge = ge->next) {
+               if (ge->type != GE_CURVE)
+                       continue;
+
+               /* the whole direction of curve */
+               dxw1 = ge->fx3 - ge->prev->fx3;
+               dyw1 = ge->fy3 - ge->prev->fy3;
+
+               while (1) {
+                       /* the whole direction of curve */
+                       dxw1 = ge->fx3 - ge->prev->fx3;
+                       dyw1 = ge->fy3 - ge->prev->fy3;
+
+                       /* directions of  ends of curve */
+                       dxb1 = ge->fx1 - ge->prev->fx3;
+                       dyb1 = ge->fy1 - ge->prev->fy3;
+                       dxe1 = ge->fx3 - ge->fx2;
+                       dye1 = ge->fy3 - ge->fy2;
+
+                       nge = ge->frwd;
+
+                       if (nge->type != GE_CURVE)
+                               break;
+
+                       dxw2 = nge->fx3 - ge->fx3;
+                       dyw2 = nge->fy3 - ge->fy3;
+
+                       dxb2 = nge->fx1 - ge->fx3;
+                       dyb2 = nge->fy1 - ge->fy3;
+                       dxe2 = nge->fx3 - nge->fx2;
+                       dye2 = nge->fy3 - nge->fy2;
+
+                       /* if curve changes direction */
+                       if (fsign(dxw1) != fsign(dxw2) || fsign(dyw1) != fsign(dyw2))
+                               break;
+
+                       /* if the arch is going in other direction */
+                       if (fsign(fabs(dxb1 * dyw1) - fabs(dyb1 * dxw1))
+                           * fsign(fabs(dxe2 * dyw2) - fabs(dye2 * dxw2)) > 0)
+                               break;
+
+                       /* get possible scale limits within which we won't cross quadrants */
+                       if( fcrossrays(ge, nge, &maxsc1, &maxsc2) == 0 ) {
+                               if(ISDBG(FCONCISE)) {
+                                       fprintf(stderr, "glyph %s has curves with strange ends\n", g->name);
+                                       dumppaths(g, ge, nge);
+                               }
+                               break;
+                       }
+
+                       if(maxsc1 < 1. || maxsc2 < 1. ) /* would create a zigzag */
+                               break;
+
+                       ge->dir = fgetcvdir(ge);
+                       nge->dir = fgetcvdir(nge);
+
+                       if( ((ge->dir&CVDIR_FRONT)-CVDIR_FEQUAL) * ((nge->dir&CVDIR_REAR)-CVDIR_REQUAL) < 0 )
+                               /* would create a zigzag */
+                               break;
+
+                       firstlen = sqrt( dxe1*dxe1 + dye1*dye1 );
+                       lastlen = sqrt( dxb2*dxb2 + dyb2*dyb2 );
+                       sumlen = firstlen + lastlen;
+
+                       /* check the scale limits */
+                       if( sumlen/firstlen > maxsc1 || sumlen/lastlen > maxsc2 ) {
+                               if(ISDBG(FCONCISE)) 
+                                       fprintf(stderr, "%s: %x, %x would be crossing in forceconcise\n", 
+                                       g->name, ge, nge);
+                               break;
+                       }
+
+                       /* OK, it seems like we can attempt to join these two curves */
+                       tge.flags = ge->flags;
+                       tge.prev = ge->prev;
+                       tge.fx1 = ge->fx1;
+                       tge.fy1 = ge->fy1;
+                       tge.fx2 = nge->fx2;
+                       tge.fy2 = nge->fy2;
+                       tge.fx3 = nge->fx3;
+                       tge.fy3 = nge->fy3;
+
+                       dxb1 = tge.fx1 - tge.prev->fx3;
+                       dyb1 = tge.fy1 - tge.prev->fy3;
+                       dxe1 = tge.fx3 - tge.fx2;
+                       dye1 = tge.fy3 - tge.fy2;
+
+                       /* scale the first segment */
+                       scale = sumlen / firstlen;
+                       tge.fx1 = tge.prev->fx3 + scale * dxb1;
+                       tge.fy1 = tge.prev->fy3 + scale * dyb1;
+
+                       /* scale the last segment */
+                       scale = sumlen / lastlen;
+                       tge.fx2 = tge.fx3 - scale * dxe1;
+                       tge.fy2 = tge.fy3 - scale * dye1;
+
+                       /* now check if we got something sensible */
+
+                       /* check if some important points is too far from original */
+                       scale = firstlen / sumlen;
+                       {
+                               double pts[4] = { 0./*will be replaced*/, 0.5, 0.25, 0.75 };
+                               int i, bad;
+
+                               pts[0] = scale;
+                               bad = 0;
+
+                               for(i=0; i<sizeof(pts)/sizeof(pts[0]); i++)
+                                       if(fckjoinedcv(g, pts[i], &tge, ge, nge, scale)) {
+                                               bad = 1;
+                                               break;
+                                       }
+                               if(bad)
+                                       break;
+                       }
+
+                       /* OK, it looks reasonably, let's apply it */
+                       if(ISDBG(FCONCISE)) 
+                               dumppaths(g, ge, nge);
+
+                       for(i=0; i<3; i++) {
+                               ge->fxn[i] = tge.fxn[i];
+                               ge->fyn[i] = tge.fyn[i];
+                       }
+
+                       freethisge(nge);
+               }
+       }
+}
+
+void
+print_glyph(
+          int glyphno
+)
+{
+       GLYPH          *g;
+       GENTRY         *ge;
+       int             x = 0, y = 0;
+       int             i;
+       int             grp, lastgrp= -1;
+
+       g = &glyph_list[glyphno];
+
+       fprintf(pfa_file, "/%s { \n", g->name);
+
+       /* consider widths >MAXLEGALWIDTH as bugs */
+       if( g->scaledwidth <= MAXLEGALWIDTH ) {
+               fprintf(pfa_file, "0 %d hsbw\n", g->scaledwidth);
+       } else {
+               fprintf(pfa_file, "0 1000 hsbw\n");
+               WARNING_2 fprintf(stderr, "glyph %s: width %d seems to be buggy, set to 1000\n",
+                       g->name, g->scaledwidth);
+       }
+
+#if 0
+       fprintf(pfa_file, "%% contours: ");
+       for (i = 0; i < g->ncontours; i++)
+               fprintf(pfa_file, "%s(%d,%d) ", (g->contours[i].direction == DIR_OUTER ? "out" : "in"),
+                       g->contours[i].xofmin, g->contours[i].ymin);
+       fprintf(pfa_file, "\n");
+
+       if (g->rymin < 5000)
+               fprintf(pfa_file, "%d lower%s\n", g->rymin, (g->flatymin ? "flat" : "curve"));
+       if (g->rymax > -5000)
+               fprintf(pfa_file, "%d upper%s\n", g->rymax, (g->flatymax ? "flat" : "curve"));
+#endif
+
+       if (g->hstems)
+               for (i = 0; i < g->nhs; i += 2) {
+                       if (g->hstems[i].flags & ST_3) {
+                               fprintf(pfa_file, "%d %d %d %d %d %d hstem3\n",
+                                       g->hstems[i].value,
+                               g->hstems[i + 1].value - g->hstems[i].value,
+                                       g->hstems[i + 2].value,
+                                       g->hstems[i + 3].value - g->hstems[i + 2].value,
+                                       g->hstems[i + 4].value,
+                                       g->hstems[i + 5].value - g->hstems[i + 4].value
+                                       );
+                               i += 4;
+                       } else {
+                               fprintf(pfa_file, "%d %d hstem\n", g->hstems[i].value,
+                               g->hstems[i + 1].value - g->hstems[i].value);
+                       }
+               }
+
+       if (g->vstems)
+               for (i = 0; i < g->nvs; i += 2) {
+                       if (g->vstems[i].flags & ST_3) {
+                               fprintf(pfa_file, "%d %d %d %d %d %d vstem3\n",
+                                       g->vstems[i].value,
+                               g->vstems[i + 1].value - g->vstems[i].value,
+                                       g->vstems[i + 2].value,
+                                       g->vstems[i + 3].value - g->vstems[i + 2].value,
+                                       g->vstems[i + 4].value,
+                                       g->vstems[i + 5].value - g->vstems[i + 4].value
+                                       );
+                               i += 4;
+                       } else {
+                               fprintf(pfa_file, "%d %d vstem\n", g->vstems[i].value,
+                               g->vstems[i + 1].value - g->vstems[i].value);
+                       }
+               }
+
+       for (ge = g->entries; ge != 0; ge = ge->next) {
+               if(g->nsg>0) {
+                       grp=ge->stemid;
+                       if(grp >= 0 && grp != lastgrp)  {
+                               fprintf(pfa_file, "%d 4 callsubr\n", grp+g->firstsubr);
+                               lastgrp=grp;
+                       }
+               }
+
+               switch (ge->type) {
+               case GE_MOVE:
+                       if (absolute)
+                               fprintf(pfa_file, "%d %d amoveto\n", ge->ix3, ge->iy3);
+                       else
+                               rmoveto(ge->ix3 - x, ge->iy3 - y);
+                       if (0)
+                               fprintf(stderr, "Glyph %s: print moveto(%d, %d)\n",
+                                       g->name, ge->ix3, ge->iy3);
+                       x = ge->ix3;
+                       y = ge->iy3;
+                       break;
+               case GE_LINE:
+                       if (absolute)
+                               fprintf(pfa_file, "%d %d alineto\n", ge->ix3, ge->iy3);
+                       else
+                               rlineto(ge->ix3 - x, ge->iy3 - y);
+                       x = ge->ix3;
+                       y = ge->iy3;
+                       break;
+               case GE_CURVE:
+                       if (absolute)
+                               fprintf(pfa_file, "%d %d %d %d %d %d arcurveto\n",
+                                       ge->ix1, ge->iy1, ge->ix2, ge->iy2, ge->ix3, ge->iy3);
+                       else
+                               rrcurveto(ge->ix1 - x, ge->iy1 - y,
+                                         ge->ix2 - ge->ix1, ge->iy2 - ge->iy1,
+                                         ge->ix3 - ge->ix2, ge->iy3 - ge->iy2);
+                       x = ge->ix3;
+                       y = ge->iy3;
+                       break;
+               case GE_PATH:
+                       closepath();
+                       break;
+               default:
+                       WARNING_1 fprintf(stderr, "**** Glyph %s: unknown entry type '%c'\n",
+                               g->name, ge->type);
+                       break;
+               }
+       }
+
+       fprintf(pfa_file, "endchar } ND\n");
+}
+
+/* print the subroutines for this glyph, returns the number of them */
+int
+print_glyph_subs(
+          int glyphno,
+          int startid /* start numbering subroutines from this id */
+)
+{
+       GLYPH *g;
+       int i, grp;
+
+       g = &glyph_list[glyphno];
+
+       if(!hints || !subhints || g->nsg<1)
+               return 0;
+
+       g->firstsubr=startid;
+
+#if 0
+       fprintf(pfa_file, "%% %s %d\n", g->name, g->nsg);
+#endif
+       for(grp=0; grp<g->nsg; grp++) {
+               fprintf(pfa_file, "dup %d {\n", startid++);
+               for(i= (grp==0)? 0 : g->nsbs[grp-1]; i<g->nsbs[grp]; i++)
+                       fprintf(pfa_file, "\t%d %d %cstem\n", g->sbstems[i].low, 
+                               g->sbstems[i].high-g->sbstems[i].low,
+                               g->sbstems[i].isvert ? 'v' : 'h');
+               fprintf(pfa_file, "\treturn\n\t} NP\n");
+       }
+
+       return g->nsg;
+}
+
+void
+print_glyph_metrics(
+          int code,
+          int glyphno
+)
+{
+       GLYPH *g;
+
+       g = &glyph_list[glyphno];
+
+       if(transform)
+         fprintf(afm_file, "C %d ; WX %d ; N %s ; B %d %d %d %d ;\n",
+                 code, g->scaledwidth, g->name,
+                 iscale(g->xMin), iscale(g->yMin), iscale(g->xMax), iscale(g->yMax));
+       else
+         fprintf(afm_file, "C %d ; WX %d ; N %s ; B %d %d %d %d ;\n",
+                 code, g->scaledwidth, g->name,
+                 g->xMin, g->yMin, g->xMax, g->yMax);
+}
+
+/*
+ SB:
+ An important note about the BlueValues.
+
+ The Adobe documentation says that the maximal width of a Blue zone
+ is connected to the value of BlueScale, which is by default 0.039625.
+ The BlueScale value defines, at which point size the overshoot
+ suppression be disabled.
+
+ The formula for it that is given in the manual is:
+
+  BlueScale=point_size/240, for a 300dpi device
+
+ that makes us wonder what is this 240 standing for. Incidentally
+ 240=72*1000/300, where 72 is the relation between inches and points,
+ 1000 is the size of the glyph matrix, and 300dpi is the resolution of
+ the output device. Knowing that we can recalculate the formula for
+ the font size in pixels rather than points:
+
+  BlueScale=pixel_size/1000
+
+ That looks a lot simpler than the original formula, does not it ?
+ And the limitation about the maximal width of zone also looks
+ a lot simpler after the transformation:
+
+  max_width < 1000/pixel_size
+
+ that ensures that even at the maximal pixel size when the overshoot
+ suppression is disabled the zone width will be less than one pixel.
+ This is important, failure to comply to this limit will result in
+ really ugly fonts (been there, done that). But knowing the formula
+ for the pixel width, we see that in fact we can use the maximal width
+ of 24, not 23 as specified in the manual.
+
+*/
+
+#define MAXBLUEWIDTH (24)
+
+/*
+ * Find the indexes of the most frequent values
+ * in the hystogram, sort them in ascending order, and save which one
+ * was the best one (if asked).
+ * Returns the number of values found (may be less than maximal because
+ * we ignore the zero values)
+ */
+
+#define MAXHYST        (2000)          /* size of the hystogram */
+#define HYSTBASE 500
+
+static int
+besthyst(
+        int *hyst,             /* the hystogram */
+        int base,              /* the base point of the hystogram */
+        int *best,             /* the array for indexes of best values */
+        int nbest,             /* its allocated size */
+        int width,             /* minimal difference between indexes */
+        int *bestindp          /* returned top point */
+)
+{
+       unsigned char   hused[MAXHYST / 8 + 1];
+       int             i, max, j, w, last = 0;
+       int             nf = 0;
+
+       width--;
+
+       memset(hused, 0 , sizeof hused);
+
+       max = 1;
+       for (i = 0; i < nbest && max != 0; i++) {
+               best[i] = 0;
+               max = 0;
+               for (j = 1; j < MAXHYST - 1; j++) {
+                       w = hyst[j];
+
+                       if (w > max && (hused[j>>3] & (1 << (j & 0x07))) == 0) {
+                               best[i] = j;
+                               max = w;
+                       }
+               }
+               if (max != 0) {
+                       if (max < last/2) {
+                               /* do not pick the too low values */
+                               break;
+                       }
+                       for (j = best[i] - width; j <= best[i] + width; j++) {
+                               if (j >= 0 && j < MAXHYST)
+                                       hused[j >> 3] |= (1 << (j & 0x07));
+                       }
+                       last = max;
+                       best[i] -= base;
+                       nf = i + 1;
+               }
+       }
+
+       if (bestindp)
+               *bestindp = best[0];
+
+       /* sort the indexes in ascending order */
+       for (i = 0; i < nf; i++) {
+               for (j = i + 1; j < nf; j++)
+                       if (best[j] < best[i]) {
+                               w = best[i];
+                               best[i] = best[j];
+                               best[j] = w;
+                       }
+       }
+
+       return nf;
+}
+
+/*
+ * Find the next best Blue zone in the hystogram.
+ * Return the weight of the found zone.
+ */
+
+static int
+bestblue(
+        short *zhyst,          /* the zones hystogram */
+        short *physt,          /* the points hystogram */
+        short *ozhyst,         /* the other zones hystogram */
+        int *bluetab           /* where to put the found zone */
+)
+{
+       int             i, j, w, max, ind, first, last;
+
+       /* find the highest point in the zones hystogram */
+       /* if we have a plateau, take its center */
+       /* if we have multiple peaks, take the first one */
+
+       max = -1;
+       first = last = -10;
+       for (i = 0; i <= MAXHYST - MAXBLUEWIDTH; i++) {
+               w = zhyst[i];
+               if (w > max) {
+                       first = last = i;
+                       max = w;
+               } else if (w == max) {
+                       if (last == i - 1)
+                               last = i;
+               }
+       }
+       ind = (first + last) / 2;
+
+       if (max == 0)           /* no zones left */
+               return 0;
+
+       /* now we reuse `first' and `last' as inclusive borders of the zone */
+       first = ind;
+       last = ind + (MAXBLUEWIDTH - 1);
+
+       /* our maximal width is far too big, so we try to make it narrower */
+       w = max;
+       j = (w & 1);            /* a pseudo-random bit */
+       while (1) {
+               while (physt[first] == 0)
+                       first++;
+               while (physt[last] == 0)
+                       last--;
+               if (last - first < (MAXBLUEWIDTH * 2 / 3) || (max - w) * 10 > max)
+                       break;
+
+               if (physt[first] < physt[last]
+                   || physt[first] == physt[last] && j) {
+                       if (physt[first] * 20 > w)      /* if weight is >5%,
+                                                        * stop */
+                               break;
+                       w -= physt[first];
+                       first++;
+                       j = 0;
+               } else {
+                       if (physt[last] * 20 > w)       /* if weight is >5%,
+                                                        * stop */
+                               break;
+                       w -= physt[last];
+                       last--;
+                       j = 1;
+               }
+       }
+
+       /* save our zone */
+       bluetab[0] = first - HYSTBASE;
+       bluetab[1] = last - HYSTBASE;
+
+       /* invalidate all the zones overlapping with this one */
+       /* the constant of 2 is determined by the default value of BlueFuzz */
+       for (i = first - (MAXBLUEWIDTH - 1) - 2; i <= last + 2; i++)
+               if (i >= 0 && i < MAXHYST) {
+                       zhyst[i] = 0;
+                       ozhyst[i] = 0;
+               }
+       return w;
+}
+
+/*
+ * Try to find the Blue Values, bounding box and italic angle
+ */
+
+void
+findblues(void)
+{
+       /* hystograms for upper and lower zones */
+       short           hystl[MAXHYST];
+       short           hystu[MAXHYST];
+       short           zuhyst[MAXHYST];
+       short           zlhyst[MAXHYST];
+       int             nchars;
+       int             i, j, k, w, max;
+       GENTRY         *ge;
+       GLYPH          *g;
+       double          ang;
+
+       /* find the lowest and highest points of glyphs */
+       /* and by the way build the values for FontBBox */
+       /* and build the hystogram for the ItalicAngle */
+
+       /* re-use hystl for the hystogram of italic angle */
+
+       bbox[0] = bbox[1] = 5000;
+       bbox[2] = bbox[3] = -5000;
+
+       for (i = 0; i < MAXHYST; i++)
+               hystl[i] = 0;
+
+       nchars = 0;
+
+       for (i = 0, g = glyph_list; i < numglyphs; i++, g++) {
+               if (g->flags & GF_USED) {
+                       nchars++;
+
+                       g->rymin = 5000;
+                       g->rymax = -5000;
+                       for (ge = g->entries; ge != 0; ge = ge->next) {
+                               if (ge->type == GE_LINE) {
+
+                                       j = ge->iy3 - ge->prev->iy3;
+                                       k = ge->ix3 - ge->prev->ix3;
+                                       if (j > 0)
+                                               ang = atan2(-k, j) * 180.0 / M_PI;
+                                       else
+                                               ang = atan2(k, -j) * 180.0 / M_PI;
+
+                                       k /= 100;
+                                       j /= 100;
+                                       if (ang > -45.0 && ang < 45.0) {
+                                               /*
+                                                * be careful to not overflow
+                                                * the counter
+                                                */
+                                               hystl[HYSTBASE + (int) (ang * 10.0)] += (k * k + j * j) / 4;
+                                       }
+                                       if (ge->iy3 == ge->prev->iy3) {
+                                               if (ge->iy3 <= g->rymin) {
+                                                       g->rymin = ge->iy3;
+                                                       g->flatymin = 1;
+                                               }
+                                               if (ge->iy3 >= g->rymax) {
+                                                       g->rymax = ge->iy3;
+                                                       g->flatymax = 1;
+                                               }
+                                       } else {
+                                               if (ge->iy3 < g->rymin) {
+                                                       g->rymin = ge->iy3;
+                                                       g->flatymin = 0;
+                                               }
+                                               if (ge->iy3 > g->rymax) {
+                                                       g->rymax = ge->iy3;
+                                                       g->flatymax = 0;
+                                               }
+                                       }
+                               } else if (ge->type == GE_CURVE) {
+                                       if (ge->iy3 < g->rymin) {
+                                               g->rymin = ge->iy3;
+                                               g->flatymin = 0;
+                                       }
+                                       if (ge->iy3 > g->rymax) {
+                                               g->rymax = ge->iy3;
+                                               g->flatymax = 0;
+                                       }
+                               }
+                               if (ge->type == GE_LINE || ge->type == GE_CURVE) {
+                                       if (ge->ix3 < bbox[0])
+                                               bbox[0] = ge->ix3;
+                                       if (ge->ix3 > bbox[2])
+                                               bbox[2] = ge->ix3;
+                                       if (ge->iy3 < bbox[1])
+                                               bbox[1] = ge->iy3;
+                                       if (ge->iy3 > bbox[3])
+                                               bbox[3] = ge->iy3;
+                               }
+                       }
+               }
+       }
+
+       /* get the most popular angle */
+       max = 0;
+       w = 0;
+       for (i = 0; i < MAXHYST; i++) {
+               if (hystl[i] > w) {
+                       w = hystl[i];
+                       max = i;
+               }
+       }
+       ang = (double) (max - HYSTBASE) / 10.0;
+       WARNING_2 fprintf(stderr, "Guessed italic angle: %f\n", ang);
+       if (italic_angle == 0.0)
+               italic_angle = ang;
+
+       /* build the hystogram of the lower points */
+       for (i = 0; i < MAXHYST; i++)
+               hystl[i] = 0;
+
+       for (i = 0, g = glyph_list; i < numglyphs; i++, g++) {
+               if ((g->flags & GF_USED)
+                   && g->rymin + HYSTBASE >= 0 && g->rymin < MAXHYST - HYSTBASE) {
+                       hystl[g->rymin + HYSTBASE]++;
+               }
+       }
+
+       /* build the hystogram of the upper points */
+       for (i = 0; i < MAXHYST; i++)
+               hystu[i] = 0;
+
+       for (i = 0, g = glyph_list; i < numglyphs; i++, g++) {
+               if ((g->flags & GF_USED)
+                   && g->rymax + HYSTBASE >= 0 && g->rymax < MAXHYST - HYSTBASE) {
+                       hystu[g->rymax + HYSTBASE]++;
+               }
+       }
+
+       /* build the hystogram of all the possible lower zones with max width */
+       for (i = 0; i < MAXHYST; i++)
+               zlhyst[i] = 0;
+
+       for (i = 0; i <= MAXHYST - MAXBLUEWIDTH; i++) {
+               for (j = 0; j < MAXBLUEWIDTH; j++)
+                       zlhyst[i] += hystl[i + j];
+       }
+
+       /* build the hystogram of all the possible upper zones with max width */
+       for (i = 0; i < MAXHYST; i++)
+               zuhyst[i] = 0;
+
+       for (i = 0; i <= MAXHYST - MAXBLUEWIDTH; i++) {
+               for (j = 0; j < MAXBLUEWIDTH; j++)
+                       zuhyst[i] += hystu[i + j];
+       }
+
+       /* find the baseline */
+       w = bestblue(zlhyst, hystl, zuhyst, &bluevalues[0]);
+       if (0)
+               fprintf(stderr, "BaselineBlue zone %d%% %d...%d\n", w * 100 / nchars,
+                               bluevalues[0], bluevalues[1]);
+
+       if (w == 0)             /* no baseline, something weird */
+               return;
+
+       /* find the upper zones */
+       for (nblues = 2; nblues < 14; nblues += 2) {
+               w = bestblue(zuhyst, hystu, zlhyst, &bluevalues[nblues]);
+
+               if (0)
+                       fprintf(stderr, "Blue zone %d%% %d...%d\n", w * 100 / nchars, 
+                               bluevalues[nblues], bluevalues[nblues+1]);
+
+               if (w * 20 < nchars)
+                       break;  /* don't save this zone */
+       }
+
+       /* find the lower zones */
+       for (notherb = 0; notherb < 10; notherb += 2) {
+               w = bestblue(zlhyst, hystl, zuhyst, &otherblues[notherb]);
+
+               if (0)
+                       fprintf(stderr, "OtherBlue zone %d%% %d...%d\n", w * 100 / nchars,
+                               otherblues[notherb], otherblues[notherb+1]);
+
+
+               if (w * 20 < nchars)
+                       break;  /* don't save this zone */
+       }
+
+}
+
+/*
+ * Find the actual width of the glyph and modify the
+ * description to reflect it. Not guaranteed to do
+ * any good, may make character spacing too wide.
+ */
+
+void
+docorrectwidth(void)
+{
+       int             i;
+       GENTRY         *ge;
+       GLYPH          *g;
+       int             xmin, xmax;
+       int             maxwidth, minsp;
+
+       /* enforce this minimal spacing,
+        * we limit the amount of the enforced spacing to avoid
+        * spacing the bold wonts too widely
+        */
+       minsp = (stdhw>60 || stdhw<10)? 60 : stdhw;
+
+       for (i = 0, g = glyph_list; i < numglyphs; i++, g++) {
+               g->oldwidth=g->scaledwidth; /* save the old width, will need for AFM */
+
+               if (correctwidth && g->flags & GF_USED) {
+                       xmin = 5000;
+                       xmax = -5000;
+                       for (ge = g->entries; ge != 0; ge = ge->next) {
+                               if (ge->type != GE_LINE && ge->type != GE_CURVE) 
+                                       continue;
+
+                               if (ge->ix3 <= xmin) {
+                                       xmin = ge->ix3;
+                               }
+                               if (ge->ix3 >= xmax) {
+                                       xmax = ge->ix3;
+                               }
+                       }
+
+                       maxwidth=xmax+minsp;
+                       if( g->scaledwidth < maxwidth ) {
+                               g->scaledwidth = maxwidth;
+                               WARNING_3 fprintf(stderr, "glyph %s: extended from %d to %d\n",
+                                       g->name, g->oldwidth, g->scaledwidth );
+                       }
+               }
+       }
+
+}
+
+/*
+ * Try to find the typical stem widths
+ */
+
+void
+stemstatistics(void)
+{
+#define MINDIST        10 /* minimal distance between the widths */
+       int             hyst[MAXHYST+MINDIST*2];
+       int             best[12];
+       int             i, j, k, w;
+       int             nchars;
+       int             ns;
+       STEM           *s;
+       GLYPH          *g;
+
+       /* start with typical stem width */
+
+       nchars=0;
+
+       /* build the hystogram of horizontal stem widths */
+       memset(hyst, 0, sizeof hyst);
+
+       for (i = 0, g = glyph_list; i < numglyphs; i++, g++) {
+               if (g->flags & GF_USED) {
+                       nchars++;
+                       s = g->hstems;
+                       for (j = 0; j < g->nhs; j += 2) {
+                               if ((s[j].flags | s[j + 1].flags) & ST_END)
+                                       continue;
+                               w = s[j + 1].value - s[j].value+1;
+                               if(w==20) /* split stems should not be counted */
+                                       continue;
+                               if (w > 0 && w < MAXHYST - 1) {
+                                       /*
+                                        * handle some fuzz present in
+                                        * converted fonts
+                                        */
+                                       hyst[w+MINDIST] += MINDIST-1;
+                                       for(k=1; k<MINDIST-1; k++) {
+                                               hyst[w+MINDIST + k] += MINDIST-1-k;
+                                               hyst[w+MINDIST - k] += MINDIST-1-k;
+                                       }
+                               }
+                       }
+               }
+       }
+
+       /* find 12 most frequent values */
+       ns = besthyst(hyst+MINDIST, 0, best, 12, MINDIST, &stdhw);
+
+       /* store data in stemsnaph */
+       for (i = 0; i < ns; i++)
+               stemsnaph[i] = best[i];
+       if (ns < 12)
+               stemsnaph[ns] = 0;
+
+       /* build the hystogram of vertical stem widths */
+       memset(hyst, 0, sizeof hyst);
+
+       for (i = 0, g = glyph_list; i < numglyphs; i++, g++) {
+               if (g->flags & GF_USED) {
+                       s = g->vstems;
+                       for (j = 0; j < g->nvs; j += 2) {
+                               if ((s[j].flags | s[j + 1].flags) & ST_END)
+                                       continue;
+                               w = s[j + 1].value - s[j].value+1;
+                               if (w > 0 && w < MAXHYST - 1) {
+                                       /*
+                                        * handle some fuzz present in
+                                        * converted fonts
+                                        */
+                                       hyst[w+MINDIST] += MINDIST-1;
+                                       for(k=1; k<MINDIST-1; k++) {
+                                               hyst[w+MINDIST + k] += MINDIST-1-k;
+                                               hyst[w+MINDIST - k] += MINDIST-1-k;
+                                       }
+                               }
+                       }
+               }
+       }
+
+       /* find 12 most frequent values */
+       ns = besthyst(hyst+MINDIST, 0, best, 12, MINDIST, &stdvw);
+
+       /* store data in stemsnaph */
+       for (i = 0; i < ns; i++)
+               stemsnapv[i] = best[i];
+       if (ns < 12)
+               stemsnapv[ns] = 0;
+
+#undef MINDIST
+}
+
+/*
+ * SB
+ * A funny thing: TTF paths are going in reverse direction compared
+ * to Type1. So after all (because the rest of logic uses TTF
+ * path directions) we have to reverse the paths.
+ *
+ * It was a big headache to discover that.
+ */
+
+/* works on both int and float paths */
+
+void
+reversepathsfromto(
+                  GENTRY * from,
+                  GENTRY * to
+)
+{
+       GENTRY         *ge, *nge, *pge;
+       GENTRY         *cur, *next;
+       int i, n, ilast[2];
+       double flast[2], f;
+
+       for (ge = from; ge != 0 && ge != to; ge = ge->next) {
+               if(ge->type == GE_LINE || ge->type == GE_CURVE) {
+                       if (ISDBG(REVERSAL))
+                               fprintf(stderr, "reverse path 0x%x <- 0x%x, 0x%x\n", ge, ge->prev, ge->bkwd);
+
+                       /* cut out the path itself */
+                       pge = ge->prev; /* GE_MOVE */
+                       if (pge == 0) {
+                               fprintf(stderr, "**! No MOVE before line !!! Fatal. ****\n");
+                               exit(1);
+                       }
+                       nge = ge->bkwd->next; /* GE_PATH */
+                       pge->next = nge;
+                       nge->prev = pge;
+                       ge->bkwd->next = 0; /* mark end of chain */
+
+                       /* remember the starting point */
+                       if(ge->flags & GEF_FLOAT) {
+                               flast[0] = pge->fx3;
+                               flast[1] = pge->fy3;
+                       } else {
+                               ilast[0] = pge->ix3;
+                               ilast[1] = pge->iy3;
+                       }
+
+                       /* then reinsert them in backwards order */
+                       for(cur = ge; cur != 0; cur = next ) {
+                               next = cur->next; /* or addgeafter() will screw it up */
+                               if(cur->flags & GEF_FLOAT) {
+                                       for(i=0; i<2; i++) {
+                                               /* reverse the direction of path element */
+                                               f = cur->fpoints[i][0];
+                                               cur->fpoints[i][0] = cur->fpoints[i][1];
+                                               cur->fpoints[i][1] = f;
+                                               f = flast[i];
+                                               flast[i] = cur->fpoints[i][2];
+                                               cur->fpoints[i][2] = f;
+                                       }
+                               } else {
+                                       for(i=0; i<2; i++) {
+                                               /* reverse the direction of path element */
+                                               n = cur->ipoints[i][0];
+                                               cur->ipoints[i][0] = cur->ipoints[i][1];
+                                               cur->ipoints[i][1] = n;
+                                               n = ilast[i];
+                                               ilast[i] = cur->ipoints[i][2];
+                                               cur->ipoints[i][2] = n;
+                                       }
+                               }
+                               addgeafter(pge, cur);
+                       }
+
+                       /* restore the starting point */
+                       if(ge->flags & GEF_FLOAT) {
+                               pge->fx3 = flast[0];
+                               pge->fy3 = flast[1];
+                       } else {
+                               pge->ix3 = ilast[0];
+                               pge->iy3 = ilast[1];
+                       }
+
+                       ge = nge;
+               }
+
+       }
+}
+
+void
+reversepaths(
+            GLYPH * g
+)
+{
+       reversepathsfromto(g->entries, NULL);
+}
+
+/* add a kerning pair information, scales the value */
+
+void
+addkernpair(
+       unsigned id1,
+       unsigned id2,
+       int unscval
+)
+{
+       static unsigned char *bits = 0;
+       static int lastid;
+       GLYPH *g = &glyph_list[id1];
+       int i, n;
+       struct kern *p;
+
+       if(unscval == 0 || id1 >= numglyphs || id2 >= numglyphs)
+               return;
+
+       if( (glyph_list[id1].flags & GF_USED)==0
+       || (glyph_list[id2].flags & GF_USED)==0 )
+               return;
+
+       if(bits == 0) {
+               bits = calloc( BITMAP_BYTES(numglyphs), 1);
+               if (bits == NULL) {
+                       fprintf (stderr, "****malloc failed %s line %d\n", __FILE__, __LINE__);
+                       exit(255);
+               }
+               lastid = id1;
+       }
+
+       if(lastid != id1) {
+               /* refill the bitmap cache */
+               memset(bits, 0,BITMAP_BYTES(numglyphs));
+               p = g->kern;
+               for(i=g->kerncount; i>0; i--) {
+                       n = (p++)->id;
+                       SET_BITMAP(bits, n);
+               }
+               lastid = id1;
+       }
+
+       if(IS_BITMAP(bits, id2))
+               return; /* duplicate */
+
+       if(g->kerncount <= g->kernalloc) {
+               g->kernalloc += 8;
+               p = realloc(g->kern, sizeof(struct kern) * g->kernalloc);
+               if(p == 0) {
+                       fprintf (stderr, "** realloc failed, kerning data will be incomplete\n");
+               }
+               g->kern = p;
+       }
+
+       SET_BITMAP(bits, id2);
+       p = &g->kern[g->kerncount];
+       p->id = id2;
+       p->val = iscale(unscval) - (g->scaledwidth - g->oldwidth);
+       g->kerncount++;
+       kerning_pairs++;
+}
+
+/* print out the kerning information */
+
+void
+print_kerning(
+       FILE *afm_file
+)
+{
+       int     i, j, n;
+       GLYPH *g;
+       struct kern *p;
+
+       if( kerning_pairs == 0 ) 
+               return;
+
+       fprintf(afm_file, "StartKernData\n");
+       fprintf(afm_file, "StartKernPairs %hd\n", kerning_pairs);
+
+       for(i=0; i<numglyphs; i++)  {
+               g = &glyph_list[i];
+               if( (g->flags & GF_USED) ==0)
+                       continue;
+               p = g->kern;
+               for(j=g->kerncount; j>0; j--, p++) {
+                       fprintf(afm_file, "KPX %s %s %d\n", g->name, 
+                               glyph_list[ p->id ].name, p->val );
+               }
+       }
+
+       fprintf(afm_file, "EndKernPairs\n");
+       fprintf(afm_file, "EndKernData\n");
+}
+
+
+#if 0
+
+/*
+** This function is commented out because the information
+** collected by it is not used anywhere else yet. Now
+** it only collects the directions of contours. And the
+** direction of contours gets fixed already in draw_glyf().
+**
+***********************************************
+**
+** Here we expect that the paths are already closed.
+** We also expect that the contours do not intersect
+** and that curves doesn't cross any border of quadrant.
+**
+** Find which contours go inside which and what is
+** their proper direction. Then fix the direction
+** to make it right.
+**
+*/
+
+#define MAXCONT        1000
+
+void
+fixcontours(
+           GLYPH * g
+)
+{
+       CONTOUR         cont[MAXCONT];
+       short           ymax[MAXCONT];  /* the highest point */
+       short           xofmax[MAXCONT];        /* X-coordinate of any point
+                                                * at ymax */
+       short           ymin[MAXCONT];  /* the lowest point */
+       short           xofmin[MAXCONT];        /* X-coordinate of any point
+                                                * at ymin */
+       short           count[MAXCONT]; /* count of lines */
+       char            dir[MAXCONT];   /* in which direction they must go */
+       GENTRY         *start[MAXCONT], *minptr[MAXCONT], *maxptr[MAXCONT];
+       int             ncont;
+       int             i;
+       int             dx1, dy1, dx2, dy2;
+       GENTRY         *ge, *nge;
+
+       /* find the contours and their most upper/lower points */
+       ncont = 0;
+       ymax[0] = -5000;
+       ymin[0] = 5000;
+       for (ge = g->entries; ge != 0; ge = ge->next) {
+               if (ge->type == GE_LINE || ge->type == GE_CURVE) {
+                       if (ge->iy3 > ymax[ncont]) {
+                               ymax[ncont] = ge->iy3;
+                               xofmax[ncont] = ge->ix3;
+                               maxptr[ncont] = ge;
+                       }
+                       if (ge->iy3 < ymin[ncont]) {
+                               ymin[ncont] = ge->iy3;
+                               xofmin[ncont] = ge->ix3;
+                               minptr[ncont] = ge;
+                       }
+               }
+               if (ge->frwd != ge->next) {
+                       start[ncont++] = ge->frwd;
+                       ymax[ncont] = -5000;
+                       ymin[ncont] = 5000;
+               }
+       }
+
+       /* determine the directions of contours */
+       for (i = 0; i < ncont; i++) {
+               ge = minptr[i];
+               nge = ge->frwd;
+
+               if (ge->type == GE_CURVE) {
+                       dx1 = ge->ix3 - ge->ix2;
+                       dy1 = ge->iy3 - ge->iy2;
+
+                       if (dx1 == 0 && dy1 == 0) {     /* a pathological case */
+                               dx1 = ge->ix3 - ge->ix1;
+                               dy1 = ge->iy3 - ge->iy1;
+                       }
+                       if (dx1 == 0 && dy1 == 0) {     /* a more pathological
+                                                        * case */
+                               dx1 = ge->ix3 - ge->prev->ix3;
+                               dy1 = ge->iy3 - ge->prev->iy3;
+                       }
+               } else {
+                       dx1 = ge->ix3 - ge->prev->ix3;
+                       dy1 = ge->iy3 - ge->prev->iy3;
+               }
+               if (nge->type == GE_CURVE) {
+                       dx2 = ge->ix3 - nge->ix1;
+                       dy2 = ge->iy3 - nge->iy1;
+                       if (dx1 == 0 && dy1 == 0) {     /* a pathological case */
+                               dx2 = ge->ix3 - nge->ix2;
+                               dy2 = ge->iy3 - nge->iy2;
+                       }
+                       if (dx1 == 0 && dy1 == 0) {     /* a more pathological
+                                                        * case */
+                               dx2 = ge->ix3 - nge->ix3;
+                               dy2 = ge->iy3 - nge->iy3;
+                       }
+               } else {
+                       dx2 = ge->ix3 - nge->ix3;
+                       dy2 = ge->iy3 - nge->iy3;
+               }
+
+               /* compare angles */
+               cont[i].direction = DIR_INNER;
+               if (dy1 == 0) {
+                       if (dx1 < 0)
+                               cont[i].direction = DIR_OUTER;
+               } else if (dy2 == 0) {
+                       if (dx2 > 0)
+                               cont[i].direction = DIR_OUTER;
+               } else if (dx2 * dy1 < dx1 * dy2)
+                       cont[i].direction = DIR_OUTER;
+
+               cont[i].ymin = ymin[i];
+               cont[i].xofmin = xofmin[i];
+       }
+
+       /* save the information that may be needed further */
+       g->ncontours = ncont;
+       if (ncont > 0) {
+               g->contours = malloc(sizeof(CONTOUR) * ncont);
+               if (g->contours == 0) {
+                       fprintf(stderr, "***** Memory allocation error *****\n");
+                       exit(255);
+               }
+               memcpy(g->contours, cont, sizeof(CONTOUR) * ncont);
+       }
+}
+
+#endif
+
+/*
+ *
+ */
+